Citation: ZHAO Xue-Ting, DONG Yong-Chun, CHENG Bo-Wen, KANG Wei-Min. Coordination Kinetics of Fe3+ with Membranes Based on Modified PAN Nanofibers with Different Diameters, and Catalytic Effect of Their Complexes on Decomposition of Organic Dye[J]. Acta Physico-Chimica Sinica, ;2013, 29(12): 2513-2522. doi: 10.3866/PKU.WHXB201310233 shu

Coordination Kinetics of Fe3+ with Membranes Based on Modified PAN Nanofibers with Different Diameters, and Catalytic Effect of Their Complexes on Decomposition of Organic Dye

  • Received Date: 12 August 2013
    Available Online: 23 October 2013

    Fund Project: 天津市应用基础与前沿技术重点研究计划(11JCZDJC24600, 11ZCKFGX03200) (11JCZDJC24600, 11ZCKFGX03200)国家自然科学基金(2020773093, 51102178)资助项目 (2020773093, 51102178)

  • Membranes produced from modified polyacrylonitrile (PAN) nanofibers with different diameters were prepared by electrospinning and amidoximation. They were then used as ligands to coordinate with Fe3+ for preparing modified PAN nano-fibrous membrane Fe complexes. The coordination kinetics of three modified PAN nano-fibrous membranes with Fe3+ were studied, and the effects of temperature and the Fe3+ initial concentration on the coordination kinetics were also examined. Finally, the catalytic activities of the three modified PAN nano- fibrous membrane Fe complexes were evaluated as heterogeneous Fenton catalysts in the degradation of an organic dye. The effect of fiber diameter on the catalytic activity of the complexes was investigated. The results indicated that within the observed temperature and concentration ranges, the equilibrium data for the coordination of Fe3+ with the modified PAN nano-fibrous membranes correlated with the Langmuir and Freundlich isotherm equations, but the coordination kinetics showed better agreement with the Lagergren second-order equation. Modified PAN nanofibrous membranes with small diameters showed higher Fe- coordinating capacities and reaction rate constants under the same conditions, indicating that they reacted with Fe3+ more easily than the others did. Better catalytic activities for dye degradation were found for the three modified PAN nanofibrous membrane Fe complexes in the dark, and these were further improved by light irradiation. The catalytic activities of the complexes were significantly affected by the nanofiber diameter. The complex prepared using a modified PAN nanofibrous membrane with fibers of an appropriate diameter exhibited the best catalytic activity.

  • 加载中
    1. [1]

      (1) Janiak, C. Chem. Soc. Dalton Trans. 2003, 14 (6), 2781.

    2. [2]

      (2) Vassilev, K.; Turmanova, S. Polym. Bull. 2008, 60 (2), 243.

    3. [3]

      (3) Wu, S. H.; Xie, Q. X.; Zhu, C. Y.; Huang,W. P.; Yang, X. L.;Wu,W. Y. Polym. Mater. Sci. Eng. 2000, 16 (3), 1. [吴世华,解勤兴, 朱常英, 黄唯平, 杨秀檩, 吴文艳. 高分子材料科学与工程, 2000, 16 (3), 1.]

    4. [4]

      (4) Espenson, J. H. Chemical Kinetics and Reaction Mechanisms,2nd ed.; McGraw-Hill Inc: New York, 1995; pp 1-3.

    5. [5]

      (5) Xu, Y. Chemical Reaction Kinetics; Chemical Industry Press:Beijing, 2005; pp 151-153. [许越. 化学反应动力学. 北京:化学工业出版社, 2005: 151-153.]

    6. [6]

      (6) Zhang, D. Y.;Wu, Z. C.; Zhou, K.; Chen, P. G. Polym. Mater. Sci. Eng. 2008, 24 (6), 38. [张宇东, 吴之传, 周凯, 陈培根.高分子材料科学与工程, 2008, 24 (6), 38.]

    7. [7]

      (7) Dong, Y. C.;Wu, J. N.; Sun, S. T.; Zheng, X.; Han, Z. B.; Liu,C. Y. Journal of Sichuan University (Engineering Science Edition) 2011, 43 (1), 173. [董永春, 武金娜, 孙苏婷, 郑戌,韩振邦, 刘春燕. 四川大学学报(工程科学版), 2011, 43 (1),173.]

    8. [8]

      (8) Han, Z. B.; Dong, Y. C.; Liu, C. Y. Chem. J. Chin. Univ. 2010,31 (5), 986. [韩振邦, 董永春, 刘春燕. 高等学校化学学报,2010, 31 (5), 986.]

    9. [9]

      (9) Bagheri, B.; Abdouss, M.; Aslzadeh, M. M.; Shoushtari, A. M.Iran. Polym. J. 2010, 19 (12), 911.

    10. [10]

      (10) Feng, Q.;Wang, Q. Q.; Tang, B.;Wei, A. F.;Wang, X. Q.;Wei,Q. F.; Huang, F. L.; Cai, Y. B.; Hou, D. Y.; Bi, S. M. Polym. Int.2013, 62 (2), 251. doi: 10.1002/pi.2013.62.issue-2

    11. [11]

      (11) Kampalanonwat, P.; Supaphol, P. ACS Appl. Mater. Inter. 2010,2 (2), 3619.

    12. [12]

      (12) Ishtchenko, V. V.; Huddersman, K. D.; Vitkovskaya, R. F. Appl. Catal. A. 2003, 242 (1), 123. doi: 10.1016/S0926-860X(02)00511-2

    13. [13]

      (13) Ishtchenko, V. V.; Huddersman, K. D.; Vitkovskaya, R. F. Appl. Catal. A 2003, 242 (2), 221. doi: 10.1016/S0926-860X(02)00512-4

    14. [14]

      (14) Vitkovskaya, R. F.; Rumynskaya, I. G.; Romanova, E. P.;Tereshchenko, L. Y. Fiber Chem. 2003, 35 (3), 202. doi: 10.1023/A:1026109923284

    15. [15]

      (15) Dong, Y. C.; Du, F.; Han, Z. B. Acta Phys. -Chim. Sin. 2008, 24 (11), 2114. [董永春, 杜芳, 韩振邦. 物理化学学报, 2008,24 (11), 2114.] doi: 10.3866/PKU.WHXB20081130

    16. [16]

      (16) Dong, Y. C.; Han, Z. B.; Liu, C. Y.; Du, F. Sci. Total. Environ.2010, 408 (10), 2245. doi: 10.1016/j.scitotenv.2010.01.020

    17. [17]

      (17) Han, Z. B.; Dong, Y. C.; Dong, S. M. J. Hazard. Mater. 2011,189 (1-2), 241. doi: 10.1016/j.jhazmat.2011.02.026

    18. [18]

      (18) Dong, Y. C.; Dong,W. J.; Han, Z. B. Catal. Today 2011, 175 (1),299. doi: 10.1016/j.cattod.2011.04.026

    19. [19]

      (19) Yang, X.W.; Luo, Y. Y. Textbook of Chemical Products: Dyestuffs; Chemical Industry Press: Beijing, 2005; pp 156-541.[杨新玮, 罗钰言. 化工产品手册: 染料. 北京: 化学工业出版社, 2005: 156-541.]

    20. [20]

      (20) Li, S. F.; Chen, J. P.;Wu,W. T. J. Mol. Catal. B 2007, 47 (3-4),117. doi: 10.1016/j.molcatb.2007.04.010

    21. [21]

      (21) Feng, Q.;Wang, X. Q.;Wei, Q. F.; Hou, D. Y.;Wei, L.; Liu, X.H.;Wang, Z. Q. Fiber. Polym. 2011, 12 (8), 1025. doi: 10.1007/s12221-011-1025-0

    22. [22]

      (22) Neghlani, P. K.; Rafizadeh, M.; Taromi, F. A. J. Hazard. Mater.2011, 186 (1), 182. doi: 10.1016/j.jhazmat.2010.10.121

    23. [23]

      (23) Lee, K. H.; Kim, H. Y.; Khil, M. S.; Ra, Y. M.; Lee, D. R.Polym. 2003, 44 (4), 1287. doi: 10.1016/S0032-3861(02)00820-0

    24. [24]

      (24) Vassilev, K.; Turmanova, S. Polym. Bull. 2005, 1 (5), 575.

    25. [25]

      (25) Qin, X. H.;Wang, X.W.; Hu, Z. M.; Liu, Z. F.;Wang, S. Y.Journal of Donghua University (Natural Science) 2005, 31 (6),16. [覃小红, 王新威, 胡祖明, 刘兆峰, 王善元. 东华大学学报(自然科学版), 2005, 31 (6), 16.]

    26. [26]

      (26) Yordem, O. S.; Papila, M.; Menceloglu, Y. Z. Mater. Des. 2008,29 (1), 34. doi: 10.1016/j.matdes.2006.12.013

    27. [27]

      (27) Wang, N.; Burugapalli, K.; Song,W.; Hall, J.; Moussy, F.;Zheng, Y. D.; Ma, Y. X.;Wu, Z. T.; Li, K. J. Membr. Sci. 2013,427 (10), 207.

    28. [28]

      (28) Chen, X.; Chen, N. L. Journal of DongHua University (Natural Science) 2009, 35 (1), 30. [陈霄, 陈南梁. 东华大学学报(自然科学版), 2009, 35 (1), 30.]


  • 加载中
    1. [1]

      Shijie Li Ke Rong Xiaoqin Wang Chuqi Shen Fang Yang Qinghong Zhang . Design of Carbon Quantum Dots/CdS/Ta3N5 S-Scheme Heterojunction Nanofibers for Efficient Photocatalytic Antibiotic Removal. Acta Physico-Chimica Sinica, 2024, 40(12): 2403005-. doi: 10.3866/PKU.WHXB202403005

    2. [2]

      Guoqiang Chen Zixuan Zheng Wei Zhong Guohong Wang Xinhe Wu . 熔融中间体运输导向合成富氨基g-C3N4纳米片用于高效光催化产H2O2. Acta Physico-Chimica Sinica, 2024, 40(11): 2406021-. doi: 10.3866/PKU.WHXB202406021

    3. [3]

      Heng Chen Longhui Nie Kai Xu Yiqiong Yang Caihong Fang . 两步焙烧法制备大比表面积和结晶性增强超薄g-C3N4纳米片及其高效光催化产H2O2. Acta Physico-Chimica Sinica, 2024, 40(11): 2406019-. doi: 10.3866/PKU.WHXB202406019

    4. [4]

      Changjun You Chunchun Wang Mingjie Cai Yanping Liu Baikang Zhu Shijie Li . 引入内建电场强化BiOBr/C3N5 S型异质结中光载流子分离以实现高效催化降解微污染物. Acta Physico-Chimica Sinica, 2024, 40(11): 2407014-. doi: 10.3866/PKU.WHXB202407014

    5. [5]

      Zijian Jiang Yuang Liu Yijian Zong Yong Fan Wanchun Zhu Yupeng Guo . Preparation of Nano Zinc Oxide by Microemulsion Method and Study on Its Photocatalytic Activity. University Chemistry, 2024, 39(5): 266-273. doi: 10.3866/PKU.DXHX202311101

    6. [6]

      Xuejiao Wang Suiying Dong Kezhen Qi Vadim Popkov Xianglin Xiang . Photocatalytic CO2 Reduction by Modified g-C3N4. Acta Physico-Chimica Sinica, 2024, 40(12): 2408005-. doi: 10.3866/PKU.WHXB202408005

    7. [7]

      Chenye An Abiduweili Sikandaier Xue Guo Yukun Zhu Hua Tang Dongjiang Yang . 红磷纳米颗粒嵌入花状CeO2分级S型异质结高效光催化产氢. Acta Physico-Chimica Sinica, 2024, 40(11): 2405019-. doi: 10.3866/PKU.WHXB202405019

    8. [8]

      Tong Zhou Xue Liu Liang Zhao Mingtao Qiao Wanying Lei . Efficient Photocatalytic H2O2 Production and Cr(VI) Reduction over a Hierarchical Ti3C2/In4SnS8 Schottky Junction. Acta Physico-Chimica Sinica, 2024, 40(10): 2309020-. doi: 10.3866/PKU.WHXB202309020

    9. [9]

      Yang Xia Kangyan Zhang Heng Yang Lijuan Shi Qun Yi . 构建双通道路径增强iCOF/Bi2O3 S型异质结在纯水体系中光催化合成H2O2性能. Acta Physico-Chimica Sinica, 2024, 40(11): 2407012-. doi: 10.3866/PKU.WHXB202407012

    10. [10]

      Xinyu Yin Haiyang Shi Yu Wang Xuefei Wang Ping Wang Huogen Yu . Spontaneously Improved Adsorption of H2O and Its Intermediates on Electron-Deficient Mn(3+δ)+ for Efficient Photocatalytic H2O2 Production. Acta Physico-Chimica Sinica, 2024, 40(10): 2312007-. doi: 10.3866/PKU.WHXB202312007

    11. [11]

      Kun WANGWenrui LIUPeng JIANGYuhang SONGLihua CHENZhao DENG . Hierarchical hollow structured BiOBr-Pt catalysts for photocatalytic CO2 reduction. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1270-1278. doi: 10.11862/CJIC.20240037

    12. [12]

      Zhuo WANGJunshan ZHANGShaoyan YANGLingyan ZHOUYedi LIYuanpei LAN . Preparation and photocatalytic performance of CeO2-reduced graphene oxide by thermal decomposition. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1708-1718. doi: 10.11862/CJIC.20240067

    13. [13]

      Jianyin He Liuyun Chen Xinling Xie Zuzeng Qin Hongbing Ji Tongming Su . ZnCoP/CdLa2S4肖特基异质结的构建促进光催化产氢. Acta Physico-Chimica Sinica, 2024, 40(11): 2404030-. doi: 10.3866/PKU.WHXB202404030

    14. [14]

      Wenxiu Yang Jinfeng Zhang Quanlong Xu Yun Yang Lijie Zhang . Bimetallic AuCu Alloy Decorated Covalent Organic Frameworks for Efficient Photocatalytic Hydrogen Production. Acta Physico-Chimica Sinica, 2024, 40(10): 2312014-. doi: 10.3866/PKU.WHXB202312014

    15. [15]

      Yuanyin Cui Jinfeng Zhang Hailiang Chu Lixian Sun Kai Dai . Rational Design of Bismuth Based Photocatalysts for Solar Energy Conversion. Acta Physico-Chimica Sinica, 2024, 40(12): 2405016-. doi: 10.3866/PKU.WHXB202405016

    16. [16]

      Ruolin CHENGHaoran WANGJing RENYingying MAHuagen LIANG . Efficient photocatalytic CO2 cycloaddition over W18O49/NH2-UiO-66 composite catalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 523-532. doi: 10.11862/CJIC.20230349

    17. [17]

      Zhiquan Zhang Baker Rhimi Zheyang Liu Min Zhou Guowei Deng Wei Wei Liang Mao Huaming Li Zhifeng Jiang . Insights into the Development of Copper-based Photocatalysts for CO2 Conversion. Acta Physico-Chimica Sinica, 2024, 40(12): 2406029-. doi: 10.3866/PKU.WHXB202406029

    18. [18]

      Jingyu Cai Xiaoyu Miao Yulai Zhao Longqiang Xiao . Exploratory Teaching Experiment Design of FeOOH-RGO Aerogel for Photocatalytic Benzene to Phenol. University Chemistry, 2024, 39(4): 169-177. doi: 10.3866/PKU.DXHX202311028

    19. [19]

      Ke Li Chuang Liu Jingping Li Guohong Wang Kai Wang . 钛酸铋/氮化碳无机有机复合S型异质结纯水光催化产过氧化氢. Acta Physico-Chimica Sinica, 2024, 40(11): 2403009-. doi: 10.3866/PKU.WHXB202403009

    20. [20]

      Qin Hu Liuyun Chen Xinling Xie Zuzeng Qin Hongbing Ji Tongming Su . Ni掺杂构建电子桥及激活MoS2惰性基面增强光催化分解水产氢. Acta Physico-Chimica Sinica, 2024, 40(11): 2406024-. doi: 10.3866/PKU.WHXB202406024

Metrics
  • PDF Downloads(570)
  • Abstract views(654)
  • HTML views(5)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return