Citation:
YU Hai-Ling, ZHANG Meng-Ying, HONG Bo, CHENG Zhi Qiang, WANG Jiao, TIAN Dong-Mei, QIU Yong-Qing. Nonlinear Optical Properties of Green Fluorescent Protein Chromophore Coupled Diradicals[J]. Acta Physico-Chimica Sinica,
;2013, 29(12): 2543-2550.
doi:
10.3866/PKU.WHXB201310232
-
The geometries, polarizabilities (αs), and first hyperpolarizabilities (βtot) of a series of green fluorescent protein chromophore coupled diradicals and their corresponding optical isomers were investigated using density functional theory (DFT). The results show that the introductions of the electron donor/acceptor significantly enhance the polarizabilities and have a different influence on the first hyperpolarizabilities. For trans isomers, the βtot values of the studied compounds increase with increasing strength of the electron-withdrawing ability of the substituent, whereas the βtot values decrease significantly with increasing strength of the electron-donating ability of the substituent. For cis isomers, the trends in the changes in the βtot values are the opposite of those for trans isomers on introduction of a donor/acceptor. Significantly, photoisomerization can lead to the different βtot values. The βtot values of cis isomers are smaller than those of trans isomers when electron acceptors are introduced. For example, the βtot value of the cis isomer with the strongest electron acceptor, i.e., ―NO2, is about 1/6 that of the corresponding trans isomer. However, the βtot values of trans isomers are smaller than those of cis isomers when electron donors are introduced. For example, the βtot value of the trans isomer with the strongest electron donor, i.e., ―NH2, is about six times smaller than that of the corresponding cis isomer. As a result, photoisomerization can modulate the molecular nonlinear optical (NLO) responses effectively.
-
-
-
[1]
(1) Nakano, M.; Yamaguchi, K. J. Chem. Phys. Lett. 1993, 206,285. doi: 10.1016/0009-2614(93)85553-Z
-
[2]
(2) Ma, N. N.; Sun, S. L.; Liu, C. G.; Sun, X. X.; Qiu, Y. Q. J. Phys. Chem. A 2011, 115, 13564. doi: 10.1021/jp206003n
-
[3]
(3) Sun, X. X.; Liu, Y.; Zhao, H. B.; Sun, S. L.; Liu, C. G.; Qiu, Y.Q. Acta Phys. -Chim. Sin. 2011, 27, 315. [孙秀欣, 刘艳, 赵海波, 孙世玲, 刘春光, 仇永清. 物理化学学报, 2011, 27, 315.]doi: 10.3866/PKU.WHXB20110236
-
[4]
(4) Liu, C. G.; Guan, X. H.; Su, Z. M. J. Phys. Chem. C 2011, 115,6024. doi: 10.1021/jp111797n
-
[5]
(5) Nakano, M.; Nagao, H.; Yamaguchi, K. Chem. Phys. Lett. 1999,311, 221. doi: 10.1016/S0009-2614(99)00852-0
-
[6]
(6) Zhong, R. L.; Xu, H. L.; Su, Z. M.; Li, Z. R.; Sun, S. L.; Qiu, Y.Q. ChemPhysChem 2012, 13, 2349. doi: 10.1002/cphc.v13.9
-
[7]
(7) Ohta, S.; Nakano, M.; Kubo, T. J. Phys. Chem. A 2007, 111,3633. doi: 10.1021/jp0713662
-
[8]
(8) Ratera, I.; Veciana, J. Chem. Soc. Rev. 2012, 41, 303. doi: 10.1039/c1cs15165g
-
[9]
(9) Coe, B. J.; Fielden, J.; Foxon, S. P.; Harris, J. A.; Helliwell, M.;Brunschwig, B. S.; Asselberghs, I.; Clays, K.; Garin, J.; Orduna,J. J. Am. Chem. Soc. 2010, 132, 10498. doi: 10.1021/ja103289a
-
[10]
(10) Leïla, B. L.; Coe, B. J.; Clays, K.; Foerier, S.; Verbiest, T.;Asselberghs, I. J. Am. Chem. Soc. 2008, 130, 3286. doi: 10.1021/ja711170q
-
[11]
(11) Nakazaki, J.; Chung, I.; Matsushita, M. M.; Sugawara, T.;Watanabe, R.; Izuoka, A.; Kawada, Y. J. Mater. Chem. 2003, 13,1011. doi: 10.1039/b211986b
-
[12]
(12) Caneschi, A.; Gatteschi, D.; Rey, P.; Sessoli, R. Inorg. Chem.1991, 30, 3936. doi: 10.1021/ic00020a029
-
[13]
(13) Angeloni, L.; Caneschi, A.; David, L.; Fabretti, A.; Ferraro, F.;Gatteschi, D.; Lirzin, A. L.; Sessoli, R. J. Mater. Chem. 1994, 4,1047. doi: 10.1039/jm9940401047
-
[14]
(14) Coe, B. J.; Harris, J. A.; Jones, L. A. J. Am. Chem. Soc. 2005,127, 4845. doi: 10.1021/ja0424124
-
[15]
(15) Muhammad, S.; Xu, H. L.; Liao, Y.; Kan, Y. H.; Su, Z. M.J. Am. Chem. Soc. 2009, 131, 11833. doi: 10.1021/ja9032023
-
[16]
(16) Nakatani, K.; Delaire, J. A. Chem. Mater. 1997, 9, 2682. doi: 10.1021/cm970369w
-
[17]
(17) Ma, N. N.; Yan, L. K.; Guan,W.; Qiu, Y. Q.; Su, Z. M. Phys. Chem. Chem. Phys. 2012, 14, 5605. doi: 10.1039/c2cp00054g
-
[18]
(18) Liu, C. G.; Su, Z. M.; Guan, X. H.; Muhammad, S. J. Phys. Chem. C 2011, 115, 23946. doi: 10.1021/jp2049958
-
[19]
(19) Brook, D. J. R.; Yee, G. T. J. Org. Chem. 2006, 71, 4889. doi: 10.1021/jo060165b
-
[20]
(20) Herebian, D.;Wieghardt, K. E.; Neese, F. J. Am. Chem. Soc.2003, 125, 10997. doi: 10.1021/ja030124m
-
[21]
(21) Muhammad, S.; Xu, H. L.; Janjua, M. R. S. A.; Su, Z. M.;Nadeem, M. Phys. Chem. Chem. Phys. 2010, 12, 4791. doi: 10.1039/b924241d
-
[22]
(22) Wang, C. H.; Ma, N. N.; Sun, X. X.; Sun, S. L.; Qiu, Y. Q.; Liu,P. J. J. Phys. Chem. A 2012, 116, 10496. doi: 10.1021/jp3062288
-
[23]
(23) Lamère, J. F.; Sasaki, I.; Lacroix, P. G. New J. Chem. 2006, 30,921. doi: 10.1039/b601315e
-
[24]
(24) Sun, X. X.; Ma, N. N.; Li, X. J.; Sun, S. L.; Xie, H. M.; Qiu, Y.Q. J. Organomet. Chem. 2012, 38, 3384.
-
[25]
(25) Tsien, R. Y. Annu. Rev. Biochem. 1998, 67, 509. doi: 10.1146/annurev.biochem.67.1.509
-
[26]
(26) Voliani, V.; Bizzarri, R.; Nifosì, R.; Abbruzzetti, S.; Grandi, E.;Viappiani, C.; Beltram, F. J. Phys. Chem. B 2008, 112,10714. doi: 10.1021/jp802419h
-
[27]
(27) Meulenaere, E. D.; Bich, N. N.;Wergifosse, M. D.; Hecke, K.V.; Meervelt, L. V.; Vanderleyden, J.; Champagne, B.; Clays, K.J. Am. Chem. Soc. 2013, 135, 4061. doi: 10.1021/ja400098b
-
[28]
(28) Bhattacharya, D.; Panda, A.; Shil, S.; swamia, T.; Misra, A.Phys. Chem. Chem. Phys. 2012, 14, 6905. doi: 10.1039/c2cp00053a
-
[29]
(29) Shil, S.; Misra, A. J. Phys. Chem. A 2010, 114, 2022. doi: 10.1021/jp910661g
-
[30]
(30) Limacher, P. A.; Mikkelsen, K. V.; Luthi, H. P. J. Chem. Phys.2009, 130, 1941141.
-
[31]
(31) Wang, F. F.; Li, Z. R.;Wu, D.;Wang, B. Q.; Li, Y.; Li, Z. J.;Chen,W.; Yu, G. T.; Gu, F. L.; Aoki, Y. J. Phys. Chem. B 2008,112, 1090.
-
[32]
(32) Sim, F.; Chin, S.; Dupuis, M.; Rice, J. E. J. Phys. Chem. 1993,97, 1158. doi: 10.1021/j100108a010
-
[33]
(33) Chopra, P.; Carlacci, L.; King, H. F.; Prasad, P. N. J. Phys. Chem. 1989, 93, 3304. doi: 10.1021/j100345a082
-
[34]
(34) Frisch, M. J.; Trucks, G.W.; Schlegel, H. B.; et al. Gaussian 09 W, Revision A.02; Gaussian Inc.:Wallingford, CT, 2009.
-
[1]
-
-
-
[1]
Hao XU , Ruopeng LI , Peixia YANG , Anmin LIU , Jie BAI . Regulation mechanism of halogen axial coordination atoms on the oxygen reduction activity of Fe-N4 site: A density functional theory study. Chinese Journal of Inorganic Chemistry, 2025, 41(4): 695-701. doi: 10.11862/CJIC.20240302
-
[2]
Zhiwen HUANG , Qi LIU , Jianping LANG . W/Cu/S cluster-based supramolecular macrocycles and their third-order nonlinear optical responses. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 79-87. doi: 10.11862/CJIC.20240184
-
[3]
Danqing Wu , Jiajun Liu , Tianyu Li , Dazhen Xu , Zhiwei Miao . Research Progress on the Simultaneous Construction of C—O and C—X Bonds via 1,2-Difunctionalization of Olefins through Radical Pathways. University Chemistry, 2024, 39(11): 146-157. doi: 10.12461/PKU.DXHX202403087
-
[4]
Meifeng Zhu , Jin Cheng , Kai Huang , Cheng Lian , Shouhong Xu , Honglai Liu . Classical Density Functional Theory for Understanding Electrochemical Interface. University Chemistry, 2025, 40(3): 148-152. doi: 10.12461/PKU.DXHX202405166
-
[5]
Kaifu Zhang , Shan Gao , Bin Yang . Application of Theoretical Calculation with Fun Practice in Raman Spectroscopy Experimental Teaching. University Chemistry, 2025, 40(3): 62-67. doi: 10.12461/PKU.DXHX202404045
-
[6]
Jie ZHAO , Sen LIU , Qikang YIN , Xiaoqing LU , Zhaojie WANG . Theoretical calculation of selective adsorption and separation of CO2 by alkali metal modified naphthalene/naphthalenediyne. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 515-522. doi: 10.11862/CJIC.20230385
-
[7]
Jie ZHAO , Huili ZHANG , Xiaoqing LU , Zhaojie WANG . Theoretical calculations of CO2 capture and separation by functional groups modified 2D covalent organic framework. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 275-283. doi: 10.11862/CJIC.20240213
-
[8]
Baitong Wei , Jinxin Guo , Xigong Liu , Rongxiu Zhu , Lei Liu . Theoretical Study on the Structure, Stability of Hydrocarbon Free Radicals and Selectivity of Alkane Chlorination Reaction. University Chemistry, 2025, 40(3): 402-407. doi: 10.12461/PKU.DXHX202406003
-
[9]
Lei Shi . Nucleophilicity and Electrophilicity of Radicals. University Chemistry, 2024, 39(11): 131-135. doi: 10.3866/PKU.DXHX202402018
-
[10]
Min LIU , Huapeng RUAN , Zhongtao FENG , Xue DONG , Haiyan CUI , Xinping WANG . Neutral boron-containing radical dimers. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 123-130. doi: 10.11862/CJIC.20240362
-
[11]
Maitri Bhattacharjee , Rekha Boruah Smriti , R. N. Dutta Purkayastha , Waldemar Maniukiewicz , Shubhamoy Chowdhury , Debasish Maiti , Tamanna Akhtar . Synthesis, structural characterization, bio-activity, and density functional theory calculation on Cu(Ⅱ) complexes with hydrazone-based Schiff base ligands. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1409-1422. doi: 10.11862/CJIC.20240007
-
[12]
Xiaochen Zhang , Fei Yu , Jie Ma . 多角度数理模拟在电容去离子中的前沿应用. Acta Physico-Chimica Sinica, 2024, 40(11): 2311026-. doi: 10.3866/PKU.WHXB202311026
-
[13]
Weina Wang , Lixia Feng , Fengyi Liu , Wenliang Wang . Computational Chemistry Experiments in Facilitating the Study of Organic Reaction Mechanism: A Case Study of Electrophilic Addition of HCl to Asymmetric Alkenes. University Chemistry, 2025, 40(3): 206-214. doi: 10.12461/PKU.DXHX202407022
-
[14]
Yufang GAO , Nan HOU , Yaning LIANG , Ning LI , Yanting ZHANG , Zelong LI , Xiaofeng LI . Nano-thin layer MCM-22 zeolite: Synthesis and catalytic properties of trimethylbenzene isomerization reaction. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1079-1087. doi: 10.11862/CJIC.20240036
-
[15]
Jiajia Li , Xiangyu Zhang , Zhihan Yuan , Zhengyang Qian , Jian Zhu . 3D Printing Based on Photo-Induced Reversible Addition-Fragmentation Chain Transfer Polymerization. University Chemistry, 2024, 39(5): 11-19. doi: 10.3866/PKU.DXHX202309073
-
[16]
Zijian Zhao , Yanxin Shi , Shicheng Li , Wenhong Ruan , Fang Zhu , Jijun Jiang . A New Exploration of the Preparation of Polyacrylic Acid by Free Radical Polymerization Based on the Concept of Green Chemistry. University Chemistry, 2024, 39(5): 315-324. doi: 10.3866/PKU.DXHX202311094
-
[17]
.
CCS Chemistry | 超分子活化底物为自由基促进高效选择性光催化氧化
. CCS Chemistry, 2025, 7(10.31635/ccschem.025.202405229): -. -
[18]
Rui Gao , Ying Zhou , Yifan Hu , Siyuan Chen , Shouhong Xu , Qianfu Luo , Wenqing Zhang . Design, Synthesis and Performance Experiment of Novel Photoswitchable Hybrid Tetraarylethenes. University Chemistry, 2024, 39(5): 125-133. doi: 10.3866/PKU.DXHX202310050
-
[19]
Yuan GAO , Yiming LIU , Chunhui WANG , Zhe HAN , Chaoyue FAN , Jie QIU . A hexanuclear cerium oxo cluster stabilized by furoate: Synthesis, structure, and remarkable ability to scavenge hydroxyl radicals. Chinese Journal of Inorganic Chemistry, 2025, 41(3): 491-498. doi: 10.11862/CJIC.20240271
-
[20]
Dongheng WANG , Si LI , Shuangquan ZANG . Construction of chiral alkynyl silver chains and modulation of chiral optical properties. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 131-140. doi: 10.11862/CJIC.20240379
-
[1]
Metrics
- PDF Downloads(529)
- Abstract views(646)
- HTML views(8)