Citation: ZHANG Qi, YU Hai-Zhu, SHI Jing. Orbital Interactions in Native Chemical Ligation Reaction of Proline Thioesters[J]. Acta Physico-Chimica Sinica, ;2013, 29(11): 2321-2331. doi: 10.3866/PKU.WHXB201310082 shu

Orbital Interactions in Native Chemical Ligation Reaction of Proline Thioesters

  • Received Date: 7 June 2013
    Available Online: 8 October 2013

    Fund Project: 国家自然科学基金(21272223, 21202006)资助项目 (21272223, 21202006)

  • A systematic theoretical study was carried out to investigate the origin of the relatively low reactivity of peptide-prolyl-thioesters in the native chemical ligation (NCL) reaction. Mechanistic calculations were performed on the two NCL reactions of peptide-prolyl-thioester (Path-Pro) and peptidealanyl-thioester (Path-Ala). The results show that both include three steps: intermolecular thiol-thioester exchange, transthioesterification, and a final intramolecular S→N acyl migration. The calculations indicate that the first step is the rate determining step of both pathways. Path-Pro is kinetically disfavored, so the peptide-prolyl-thioester is found to be less reactive in NCL reaction. This conclusion is consistent with the experimental observations. Further examination of the rate determining steps of these two pathways shows that the n→π* interaction of proline αN carbonyl increases the LUMO orbital energy of peptidyl-prolylthioester, decreases the interaction energy between proline carbonyl and the sulphur atom in aryl thiol, and finally increases the total energy barrier.

  • 加载中
    1. [1]

      (1) Dawson, P. E.; Muir, T.W.; Clark-Lewis, I.; Kent, S. B. H.Science 1994, 266, 776. doi: 10.1126/science.7973629

    2. [2]

      (2) (a) Adams, A. L.; Macmillan, D. J. Pept. Sci. 2013, 19, 65. doi: 10.1002/psc.2469

    3. [3]

      (b) Aucagne, V.; Valverde, I. E.; Marceau, P.; Galibert, M.;Dendane, N.; Delmas, A. F. Angew. Chem. Int. Edit. 2012, 51,11320.

    4. [4]

      (c) Huang, Y. C.; Li, Y. M.; Chen, Y.; Pan, M.; Li, Y. T.; Yu, L.;Guo, Q. X.; Liu, L. Angew. Chem. Int. Edit. 2013, 52, 4858.

    5. [5]

      (d) Zhan, C. Y.; Varney, K.; Yuan,W. R.; Zhao, L.; Lu,W. Y.J. Am. Chem. Soc. 2012, 134, 6855.

    6. [6]

      (e) Fang, G. M.; Li, Y. M.; Shen, F.; Huang, Y. C.; Li, J. B.; Lin,Y.; Cui, H. K.; Liu, L. Angew. Chem. Int. Edit. 2011, 50, 7645.

    7. [7]

      (f) McGinty, R. K.; Kim, J.; Chatterjee, C.; Roeder, R. G.; Muir,T.W. Nature 2008, 453, 812.

    8. [8]

      (g) Fang, G. M.;Wang, J. X.; Liu, L. Angew. Chem. Int. Edit.2012, 51, 10347.

    9. [9]

      (h) Torbeev, V. Y.; Raghuraman, H.; Mandal, K.; Senapati, S.;Perozo, E.; Kent, S. B. H. J. Am. Chem. Soc. 2009, 131, 884.

    10. [10]

      (i) Zheng, J. S.; Chang, H. N.;Wang, F. L.; Liu, L. J. Am. Chem. Soc. 2011, 133, 11080.

    11. [11]

      (3) Hackeng, T. M.; Griffin, J. H.; Dawson, P. E. Proc. Natl. Acad. Sci. U. S. A. 1999, 96, 10068. doi: 10.1073/pnas.96.18.10068

    12. [12]

      (4) Tan, Z.; Shang, S.; Danishefsky, S. J. Angew. Chem. Int. Edit.2010, 49, 9500. doi: 10.1002/anie.201005513

    13. [13]

      (5) Wang, C. J.; Li, Y.; Yang, X. Y.; Lin, L. Acta Phys. -Chim. Sin.2007, 23, 305. [王朝杰, 李永, 杨新宇, 林丽. 物理化学学报, 2007, 23, 305.] doi: 10.1016/S1872-1508(07)60024-2

    14. [14]

      (6) Zhang, B. B.; Zhao, C.;Wang, X. S.; He, L.; Du,W. H. Acta Phys. -Chim. Sin. 2013, 29, 1080. [张兵兵, 赵聪, 王雪松,何蕾, 杜为红. 物理化学学报, 2013, 29, 1080.] doi: 10.3866/PKU.WHXB201303111

    15. [15]

      (7) Wang, C. J.; Cai, Y. P.; Huang, X. H.;Wei, T. Acta Phys. -Chim. Sin. 2011, 27, 352. [王朝杰, 蔡跃飘, 黄旭慧, 卫涛. 物理化学学报, 2011, 27, 352.] doi: 10.3866/PKU.WHXB20110232

    16. [16]

      (8) Pollock, S. B.; Kent, S. B. H. Chem. Commun. 2011, 47, 2342.doi: 10.1039/c0cc04120c

    17. [17]

      (9) Frisch, M. J.; Trucks, G.W.; Schlegel, H. B.; et al. Gaussian 09,Revision B.01; Gaussian Inc.:Wallingford, CT, 2009.

    18. [18]

      (10) Becke, A. D. J. Chem. Phys. 1993, 98, 5648. doi: 10.1063/1.464913

    19. [19]

      (11) Lee, C.; Yang,W.; Parr, R. G. Phys. Rev. B 1988, 37, 785. doi: 10.1103/PhysRevB.37.785

    20. [20]

      (12) Paddon-Row, M. N.; Anderson, C. D.; Houk, K. N. J. Org. Chem. 2009, 74, 861. doi: 10.1021/jo802323p

    21. [21]

      (13) Hayden, A. E.; Houk, K. N. J. Am. Chem. Soc. 2009, 131,4084. doi: 10.1021/ja809142x

    22. [22]

      (14) Zhang, S. L.; Fu, Y.; Shang, R.; Guo, Q. X.; Liu, L. J. Am. Chem. Soc. 2010, 132, 638. doi: 10.1021/ja907448t

    23. [23]

      (15) Shang, R.; Xu, Q.; Jiang, Y. Y.;Wang, Y.; Liu, L. Org. Lett.2010, 12, 1000. doi: 10.1021/ol100008q

    24. [24]

      (16) Shang, R.; Yang, Z.W.;Wang, Y.; Zhang, S. L.; Liu, L. J. Am. Chem. Soc. 2010, 132, 14391. doi: 10.1021/ja107103b

    25. [25]

      (17) Hollwarth, A.; Bohme, M.; Dapprich, S.; Ehlers, A.W.; bbi,A.; Jonas, V.; Kohler, K. F.; Steg Mann, R.; Veldkamp, A.;Frenking, G. Chem. Phys. Lett. 1993, 208, 237. doi: 10.1016/0009-2614(93)89068-S

    26. [26]

      (18) nzalez, C.; Schlegel, H. B. J. Phys. Chem. 1990, 94, 5523.doi: 10.1021/j100377a021

    27. [27]

      (19) Zhao, Y.; Truhlar, D. G. Theor. Chem. Acc. 2008, 120, 215. doi: 10.1007/s00214-007-0310-x

    28. [28]

      (20) Lide, D. R. CRC Handbook of Chemistry and Physics, 87th ed.;Taylor & Francis: Boca Raton, Florida; 2006-2007.

    29. [29]

      (21) Tissandier, M. D.; Cowen, K. A.; Feng,W. Y.; Gundlach, E.;Cohen, M. H.; Earhart, A. D.; Coe, J. V. J. Phys. Chem. A 1998,102, 7787. doi: 10.1021/jp982638r

    30. [30]

      (22) (a) Johnson, E. C. B.; Kent, S. B. H. J. Am. Chem. Soc. 2006,128, 6640. doi: 10.1021/ja058344i

    31. [31]

      (b) Dawson, P. E.; Churchill, M. J.; Ghadiri, M. R.; Kent, S. B.H. J. Am. Chem. Soc. 1997, 119, 4325.

    32. [32]

      (23) (a)Wang, C.; Guo, Q. X.; Fu, Y. Chem. Asian J. 2011, 6, 1241.doi: 10.1002/asia.201000760

    33. [33]

      (b) Zheng, J. S.; Cui, H. K.; Fang, G. M.; Xi,W. X.; Liu, L.ChemBioChem 2010, 11, 511.

    34. [34]

      (c)Wang, C.; Guo, Q. X. Sci. China Chem. 2012, 55, 2075.

    35. [35]

      (d)Wang, C.; Liu, L. Chin. J. Chem. 2012, 30, 1974.

    36. [36]

      (24) Hinderaker, M. P.; Raines, R. T. Protein Sci. 2003, 12, 1188.doi: 10.1110/ps.0241903

    37. [37]

      (25) (a) relsky, S. I.; Lapointe, D.; Fagnou, K. J. Org. Chem.2012, 77, 658. doi: 10.1021/jo202342q

    38. [38]

      (b) relsky, S. I.; Lapointe, D.; Fagnou, K. J. Am. Chem. Soc.2008, 130, 10848.

    39. [39]

      (26) (a) Zade, S. S.; Bendikov, M. Org. Lett. 2006, 8, 5243. doi: 10.1021/ol062030y

    40. [40]

      (b) Nakatani, K.; Matsuno, T.; Adachi, K.; Hagihara, S.; Saito,I. J. Am. Chem. Soc. 2001, 123, 5695.


  • 加载中
    1. [1]

      Hong Lu Yidie Zhai Xingxing Cheng Yujia Gao Qing Wei Hao Wei . Advancements and Expansions in the Proline-Catalyzed Asymmetric Aldol Reaction. University Chemistry, 2024, 39(5): 154-162. doi: 10.3866/PKU.DXHX202310074

    2. [2]

      Jie ZHAOSen LIUQikang YINXiaoqing LUZhaojie WANG . Theoretical calculation of selective adsorption and separation of CO2 by alkali metal modified naphthalene/naphthalenediyne. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 515-522. doi: 10.11862/CJIC.20230385

    3. [3]

      Maitri BhattacharjeeRekha Boruah SmritiR. N. Dutta PurkayasthaWaldemar ManiukiewiczShubhamoy ChowdhuryDebasish MaitiTamanna Akhtar . Synthesis, structural characterization, bio-activity, and density functional theory calculation on Cu(Ⅱ) complexes with hydrazone-based Schiff base ligands. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1409-1422. doi: 10.11862/CJIC.20240007

    4. [4]

      Xiaochen Zhang Fei Yu Jie Ma . 多角度数理模拟在电容去离子中的前沿应用. Acta Physico-Chimica Sinica, 2024, 40(11): 2311026-. doi: 10.3866/PKU.WHXB202311026

    5. [5]

      Heng Zhang . Determination of All Rate Constants in the Enzyme Catalyzed Reactions Based on Michaelis-Menten Mechanism. University Chemistry, 2024, 39(4): 395-400. doi: 10.3866/PKU.DXHX202310047

    6. [6]

      Ronghao Zhao Yifan Liang Mengyao Shi Rongxiu Zhu Dongju Zhang . Investigation into the Mechanism and Migratory Aptitude of Typical Pinacol Rearrangement Reactions: A Research-Oriented Computational Chemistry Experiment. University Chemistry, 2024, 39(4): 305-313. doi: 10.3866/PKU.DXHX202309101

    7. [7]

      Yingchun ZHANGYiwei SHIRuijie YANGXin WANGZhiguo SONGMin WANG . Dual ligands manganese complexes based on benzene sulfonic acid and 2, 2′-bipyridine: Structure and catalytic properties and mechanism in Mannich reaction. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1501-1510. doi: 10.11862/CJIC.20240078

    8. [8]

      Tianlong Zhang Rongling Zhang Hongsheng Tang Yan Li Hua Li . Online Monitoring and Mechanistic Analysis of 3,5-diamino-1,2,4-triazole (DAT) Synthesis via Raman Spectroscopy: A Recommendation for a Comprehensive Instrumental Analysis Experiment. University Chemistry, 2024, 39(6): 303-311. doi: 10.3866/PKU.DXHX202312006

    9. [9]

      Xiaosong PUHangkai WUTaohong LIHuijuan LIShouqing LIUYuanbo HUANGXuemei LI . Adsorption performance and removal mechanism of Cd(Ⅱ) in water by magnesium modified carbon foam. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1537-1548. doi: 10.11862/CJIC.20240030

    10. [10]

      Yuejiao An Wenxuan Liu Yanfeng Zhang Jianjun Zhang Zhansheng Lu . Revealing Photoinduced Charge Transfer Mechanism of SnO2/BiOBr S-Scheme Heterostructure for CO2 Photoreduction. Acta Physico-Chimica Sinica, 2024, 40(12): 2407021-. doi: 10.3866/PKU.WHXB202407021

    11. [11]

      Zhen Yao Bing Lin Youping Tian Tao Li Wenhui Zhang Xiongwei Liu Wude Yang . Visible-Light-Mediated One-Pot Synthesis of Secondary Amines and Mechanistic Exploration. University Chemistry, 2024, 39(5): 201-208. doi: 10.3866/PKU.DXHX202311033

    12. [12]

      Yiying Yang Dongju Zhang . Elucidating the Concepts of Thermodynamic Control and Kinetic Control in Chemical Reactions through Theoretical Chemistry Calculations: A Computational Chemistry Experiment on the Diels-Alder Reaction. University Chemistry, 2024, 39(3): 327-335. doi: 10.3866/PKU.DXHX202309074

    13. [13]

      Feiyang Liu Liuhong Song Miaoyu Fu Zhi Zheng Gang Xie Junlong Zhao . Tryptophan’s Employment Journey. University Chemistry, 2024, 39(9): 16-21. doi: 10.12461/PKU.DXHX202404037

    14. [14]

      Meiyu Lin Yuxin Fang Songzhang Shen Yaqian Duan Wenyi Liang Chi Zhang Juan Su . Exploration and Implementation of a Dual-Pathway Blended Teaching Model in General Chemistry Experiment Course: A Case Study of Copper Glycine Synthesis and Its Thermal Analysis. University Chemistry, 2024, 39(8): 48-53. doi: 10.3866/PKU.DXHX202312042

    15. [15]

      Shuang Meng Haixin Long Zhou Zhou Meizhu Rong . Inorganic Chemistry Curriculum Design and Implementation of Based on “Stepped-Task Driven + Multi-Dimensional Output” Model: A Case Study on Intermolecular Forces. University Chemistry, 2024, 39(3): 122-131. doi: 10.3866/PKU.DXHX202309008

    16. [16]

      Hua Hou Baoshan Wang . Course Ideology and Politics Education in Theoretical and Computational Chemistry. University Chemistry, 2024, 39(2): 307-313. doi: 10.3866/PKU.DXHX202309045

    17. [17]

      Jia Yao Xiaogang Peng . Theory of Macroscopic Molecular Systems: Theoretical Framework of the Physical Chemistry Course in the Chemistry “101 Plan”. University Chemistry, 2024, 39(10): 27-37. doi: 10.12461/PKU.DXHX202408117

    18. [18]

      Lu XUChengyu ZHANGWenjuan JIHaiying YANGYunlong FU . Zinc metal-organic framework with high-density free carboxyl oxygen functionalized pore walls for targeted electrochemical sensing of paracetamol. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 907-918. doi: 10.11862/CJIC.20230431

    19. [19]

      Ping Cai Yaxian Zhu Tao Hu . Frontier Research and Basic Theory in the Classroom: an Introduction to the Inorganic Chemistry Teaching Case under the Chemistry “101 Plan”. University Chemistry, 2024, 39(10): 84-88. doi: 10.12461/PKU.DXHX202408027

    20. [20]

      Linhan Tian Changsheng Lu . Discussion on Sextuple Bonding in Diatomic Motifs of Chromium Family Elements. University Chemistry, 2024, 39(8): 395-402. doi: 10.3866/PKU.DXHX202401056

Metrics
  • PDF Downloads(615)
  • Abstract views(925)
  • HTML views(3)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return