Citation: ZHANG Qi, YU Hai-Zhu, SHI Jing. Orbital Interactions in Native Chemical Ligation Reaction of Proline Thioesters[J]. Acta Physico-Chimica Sinica, ;2013, 29(11): 2321-2331. doi: 10.3866/PKU.WHXB201310082
-
A systematic theoretical study was carried out to investigate the origin of the relatively low reactivity of peptide-prolyl-thioesters in the native chemical ligation (NCL) reaction. Mechanistic calculations were performed on the two NCL reactions of peptide-prolyl-thioester (Path-Pro) and peptidealanyl-thioester (Path-Ala). The results show that both include three steps: intermolecular thiol-thioester exchange, transthioesterification, and a final intramolecular S→N acyl migration. The calculations indicate that the first step is the rate determining step of both pathways. Path-Pro is kinetically disfavored, so the peptide-prolyl-thioester is found to be less reactive in NCL reaction. This conclusion is consistent with the experimental observations. Further examination of the rate determining steps of these two pathways shows that the n→π* interaction of proline αN carbonyl increases the LUMO orbital energy of peptidyl-prolylthioester, decreases the interaction energy between proline carbonyl and the sulphur atom in aryl thiol, and finally increases the total energy barrier.
-
-
[1]
(1) Dawson, P. E.; Muir, T.W.; Clark-Lewis, I.; Kent, S. B. H.Science 1994, 266, 776. doi: 10.1126/science.7973629
-
[2]
(2) (a) Adams, A. L.; Macmillan, D. J. Pept. Sci. 2013, 19, 65. doi: 10.1002/psc.2469
-
[3]
(b) Aucagne, V.; Valverde, I. E.; Marceau, P.; Galibert, M.;Dendane, N.; Delmas, A. F. Angew. Chem. Int. Edit. 2012, 51,11320.
-
[4]
(c) Huang, Y. C.; Li, Y. M.; Chen, Y.; Pan, M.; Li, Y. T.; Yu, L.;Guo, Q. X.; Liu, L. Angew. Chem. Int. Edit. 2013, 52, 4858.
-
[5]
(d) Zhan, C. Y.; Varney, K.; Yuan,W. R.; Zhao, L.; Lu,W. Y.J. Am. Chem. Soc. 2012, 134, 6855.
-
[6]
(e) Fang, G. M.; Li, Y. M.; Shen, F.; Huang, Y. C.; Li, J. B.; Lin,Y.; Cui, H. K.; Liu, L. Angew. Chem. Int. Edit. 2011, 50, 7645.
-
[7]
(f) McGinty, R. K.; Kim, J.; Chatterjee, C.; Roeder, R. G.; Muir,T.W. Nature 2008, 453, 812.
-
[8]
(g) Fang, G. M.;Wang, J. X.; Liu, L. Angew. Chem. Int. Edit.2012, 51, 10347.
-
[9]
(h) Torbeev, V. Y.; Raghuraman, H.; Mandal, K.; Senapati, S.;Perozo, E.; Kent, S. B. H. J. Am. Chem. Soc. 2009, 131, 884.
-
[10]
(i) Zheng, J. S.; Chang, H. N.;Wang, F. L.; Liu, L. J. Am. Chem. Soc. 2011, 133, 11080.
-
[11]
(3) Hackeng, T. M.; Griffin, J. H.; Dawson, P. E. Proc. Natl. Acad. Sci. U. S. A. 1999, 96, 10068. doi: 10.1073/pnas.96.18.10068
-
[12]
(4) Tan, Z.; Shang, S.; Danishefsky, S. J. Angew. Chem. Int. Edit.2010, 49, 9500. doi: 10.1002/anie.201005513
-
[13]
(5) Wang, C. J.; Li, Y.; Yang, X. Y.; Lin, L. Acta Phys. -Chim. Sin.2007, 23, 305. [王朝杰, 李永, 杨新宇, 林丽. 物理化学学报, 2007, 23, 305.] doi: 10.1016/S1872-1508(07)60024-2
-
[14]
(6) Zhang, B. B.; Zhao, C.;Wang, X. S.; He, L.; Du,W. H. Acta Phys. -Chim. Sin. 2013, 29, 1080. [张兵兵, 赵聪, 王雪松,何蕾, 杜为红. 物理化学学报, 2013, 29, 1080.] doi: 10.3866/PKU.WHXB201303111
-
[15]
(7) Wang, C. J.; Cai, Y. P.; Huang, X. H.;Wei, T. Acta Phys. -Chim. Sin. 2011, 27, 352. [王朝杰, 蔡跃飘, 黄旭慧, 卫涛. 物理化学学报, 2011, 27, 352.] doi: 10.3866/PKU.WHXB20110232
-
[16]
(8) Pollock, S. B.; Kent, S. B. H. Chem. Commun. 2011, 47, 2342.doi: 10.1039/c0cc04120c
-
[17]
(9) Frisch, M. J.; Trucks, G.W.; Schlegel, H. B.; et al. Gaussian 09,Revision B.01; Gaussian Inc.:Wallingford, CT, 2009.
-
[18]
(10) Becke, A. D. J. Chem. Phys. 1993, 98, 5648. doi: 10.1063/1.464913
-
[19]
(11) Lee, C.; Yang,W.; Parr, R. G. Phys. Rev. B 1988, 37, 785. doi: 10.1103/PhysRevB.37.785
-
[20]
(12) Paddon-Row, M. N.; Anderson, C. D.; Houk, K. N. J. Org. Chem. 2009, 74, 861. doi: 10.1021/jo802323p
-
[21]
(13) Hayden, A. E.; Houk, K. N. J. Am. Chem. Soc. 2009, 131,4084. doi: 10.1021/ja809142x
-
[22]
(14) Zhang, S. L.; Fu, Y.; Shang, R.; Guo, Q. X.; Liu, L. J. Am. Chem. Soc. 2010, 132, 638. doi: 10.1021/ja907448t
-
[23]
(15) Shang, R.; Xu, Q.; Jiang, Y. Y.;Wang, Y.; Liu, L. Org. Lett.2010, 12, 1000. doi: 10.1021/ol100008q
-
[24]
(16) Shang, R.; Yang, Z.W.;Wang, Y.; Zhang, S. L.; Liu, L. J. Am. Chem. Soc. 2010, 132, 14391. doi: 10.1021/ja107103b
-
[25]
(17) Hollwarth, A.; Bohme, M.; Dapprich, S.; Ehlers, A.W.; bbi,A.; Jonas, V.; Kohler, K. F.; Steg Mann, R.; Veldkamp, A.;Frenking, G. Chem. Phys. Lett. 1993, 208, 237. doi: 10.1016/0009-2614(93)89068-S
-
[26]
(18) nzalez, C.; Schlegel, H. B. J. Phys. Chem. 1990, 94, 5523.doi: 10.1021/j100377a021
-
[27]
(19) Zhao, Y.; Truhlar, D. G. Theor. Chem. Acc. 2008, 120, 215. doi: 10.1007/s00214-007-0310-x
-
[28]
(20) Lide, D. R. CRC Handbook of Chemistry and Physics, 87th ed.;Taylor & Francis: Boca Raton, Florida; 2006-2007.
-
[29]
(21) Tissandier, M. D.; Cowen, K. A.; Feng,W. Y.; Gundlach, E.;Cohen, M. H.; Earhart, A. D.; Coe, J. V. J. Phys. Chem. A 1998,102, 7787. doi: 10.1021/jp982638r
-
[30]
(22) (a) Johnson, E. C. B.; Kent, S. B. H. J. Am. Chem. Soc. 2006,128, 6640. doi: 10.1021/ja058344i
-
[31]
(b) Dawson, P. E.; Churchill, M. J.; Ghadiri, M. R.; Kent, S. B.H. J. Am. Chem. Soc. 1997, 119, 4325.
-
[32]
(23) (a)Wang, C.; Guo, Q. X.; Fu, Y. Chem. Asian J. 2011, 6, 1241.doi: 10.1002/asia.201000760
-
[33]
(b) Zheng, J. S.; Cui, H. K.; Fang, G. M.; Xi,W. X.; Liu, L.ChemBioChem 2010, 11, 511.
-
[34]
(c)Wang, C.; Guo, Q. X. Sci. China Chem. 2012, 55, 2075.
-
[35]
(d)Wang, C.; Liu, L. Chin. J. Chem. 2012, 30, 1974.
-
[36]
(24) Hinderaker, M. P.; Raines, R. T. Protein Sci. 2003, 12, 1188.doi: 10.1110/ps.0241903
-
[37]
(25) (a) relsky, S. I.; Lapointe, D.; Fagnou, K. J. Org. Chem.2012, 77, 658. doi: 10.1021/jo202342q
-
[38]
(b) relsky, S. I.; Lapointe, D.; Fagnou, K. J. Am. Chem. Soc.2008, 130, 10848.
-
[39]
(26) (a) Zade, S. S.; Bendikov, M. Org. Lett. 2006, 8, 5243. doi: 10.1021/ol062030y
-
[40]
(b) Nakatani, K.; Matsuno, T.; Adachi, K.; Hagihara, S.; Saito,I. J. Am. Chem. Soc. 2001, 123, 5695.
-
[1]
-
-
[1]
Hong Lu , Yidie Zhai , Xingxing Cheng , Yujia Gao , Qing Wei , Hao Wei . Advancements and Expansions in the Proline-Catalyzed Asymmetric Aldol Reaction. University Chemistry, 2024, 39(5): 154-162. doi: 10.3866/PKU.DXHX202310074
-
[2]
Jie ZHAO , Sen LIU , Qikang YIN , Xiaoqing LU , Zhaojie WANG . Theoretical calculation of selective adsorption and separation of CO2 by alkali metal modified naphthalene/naphthalenediyne. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 515-522. doi: 10.11862/CJIC.20230385
-
[3]
Maitri Bhattacharjee , Rekha Boruah Smriti , R. N. Dutta Purkayastha , Waldemar Maniukiewicz , Shubhamoy Chowdhury , Debasish Maiti , Tamanna Akhtar . Synthesis, structural characterization, bio-activity, and density functional theory calculation on Cu(Ⅱ) complexes with hydrazone-based Schiff base ligands. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1409-1422. doi: 10.11862/CJIC.20240007
-
[4]
Xiaochen Zhang , Fei Yu , Jie Ma . 多角度数理模拟在电容去离子中的前沿应用. Acta Physico-Chimica Sinica, 2024, 40(11): 2311026-. doi: 10.3866/PKU.WHXB202311026
-
[5]
Heng Zhang . Determination of All Rate Constants in the Enzyme Catalyzed Reactions Based on Michaelis-Menten Mechanism. University Chemistry, 2024, 39(4): 395-400. doi: 10.3866/PKU.DXHX202310047
-
[6]
Ronghao Zhao , Yifan Liang , Mengyao Shi , Rongxiu Zhu , Dongju Zhang . Investigation into the Mechanism and Migratory Aptitude of Typical Pinacol Rearrangement Reactions: A Research-Oriented Computational Chemistry Experiment. University Chemistry, 2024, 39(4): 305-313. doi: 10.3866/PKU.DXHX202309101
-
[7]
Yingchun ZHANG , Yiwei SHI , Ruijie YANG , Xin WANG , Zhiguo SONG , Min WANG . Dual ligands manganese complexes based on benzene sulfonic acid and 2, 2′-bipyridine: Structure and catalytic properties and mechanism in Mannich reaction. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1501-1510. doi: 10.11862/CJIC.20240078
-
[8]
Tianlong Zhang , Rongling Zhang , Hongsheng Tang , Yan Li , Hua Li . Online Monitoring and Mechanistic Analysis of 3,5-diamino-1,2,4-triazole (DAT) Synthesis via Raman Spectroscopy: A Recommendation for a Comprehensive Instrumental Analysis Experiment. University Chemistry, 2024, 39(6): 303-311. doi: 10.3866/PKU.DXHX202312006
-
[9]
Xiaosong PU , Hangkai WU , Taohong LI , Huijuan LI , Shouqing LIU , Yuanbo HUANG , Xuemei LI . Adsorption performance and removal mechanism of Cd(Ⅱ) in water by magnesium modified carbon foam. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1537-1548. doi: 10.11862/CJIC.20240030
-
[10]
Yuejiao An , Wenxuan Liu , Yanfeng Zhang , Jianjun Zhang , Zhansheng Lu . Revealing Photoinduced Charge Transfer Mechanism of SnO2/BiOBr S-Scheme Heterostructure for CO2 Photoreduction. Acta Physico-Chimica Sinica, 2024, 40(12): 2407021-. doi: 10.3866/PKU.WHXB202407021
-
[11]
Zhen Yao , Bing Lin , Youping Tian , Tao Li , Wenhui Zhang , Xiongwei Liu , Wude Yang . Visible-Light-Mediated One-Pot Synthesis of Secondary Amines and Mechanistic Exploration. University Chemistry, 2024, 39(5): 201-208. doi: 10.3866/PKU.DXHX202311033
-
[12]
Yiying Yang , Dongju Zhang . Elucidating the Concepts of Thermodynamic Control and Kinetic Control in Chemical Reactions through Theoretical Chemistry Calculations: A Computational Chemistry Experiment on the Diels-Alder Reaction. University Chemistry, 2024, 39(3): 327-335. doi: 10.3866/PKU.DXHX202309074
-
[13]
Feiyang Liu , Liuhong Song , Miaoyu Fu , Zhi Zheng , Gang Xie , Junlong Zhao . Tryptophan’s Employment Journey. University Chemistry, 2024, 39(9): 16-21. doi: 10.12461/PKU.DXHX202404037
-
[14]
Meiyu Lin , Yuxin Fang , Songzhang Shen , Yaqian Duan , Wenyi Liang , Chi Zhang , Juan Su . Exploration and Implementation of a Dual-Pathway Blended Teaching Model in General Chemistry Experiment Course: A Case Study of Copper Glycine Synthesis and Its Thermal Analysis. University Chemistry, 2024, 39(8): 48-53. doi: 10.3866/PKU.DXHX202312042
-
[15]
Shuang Meng , Haixin Long , Zhou Zhou , Meizhu Rong . Inorganic Chemistry Curriculum Design and Implementation of Based on “Stepped-Task Driven + Multi-Dimensional Output” Model: A Case Study on Intermolecular Forces. University Chemistry, 2024, 39(3): 122-131. doi: 10.3866/PKU.DXHX202309008
-
[16]
Hua Hou , Baoshan Wang . Course Ideology and Politics Education in Theoretical and Computational Chemistry. University Chemistry, 2024, 39(2): 307-313. doi: 10.3866/PKU.DXHX202309045
-
[17]
Jia Yao , Xiaogang Peng . Theory of Macroscopic Molecular Systems: Theoretical Framework of the Physical Chemistry Course in the Chemistry “101 Plan”. University Chemistry, 2024, 39(10): 27-37. doi: 10.12461/PKU.DXHX202408117
-
[18]
Lu XU , Chengyu ZHANG , Wenjuan JI , Haiying YANG , Yunlong FU . Zinc metal-organic framework with high-density free carboxyl oxygen functionalized pore walls for targeted electrochemical sensing of paracetamol. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 907-918. doi: 10.11862/CJIC.20230431
-
[19]
Ping Cai , Yaxian Zhu , Tao Hu . Frontier Research and Basic Theory in the Classroom: an Introduction to the Inorganic Chemistry Teaching Case under the Chemistry “101 Plan”. University Chemistry, 2024, 39(10): 84-88. doi: 10.12461/PKU.DXHX202408027
-
[20]
Linhan Tian , Changsheng Lu . Discussion on Sextuple Bonding in Diatomic Motifs of Chromium Family Elements. University Chemistry, 2024, 39(8): 395-402. doi: 10.3866/PKU.DXHX202401056
-
[1]
Metrics
- PDF Downloads(615)
- Abstract views(925)
- HTML views(3)