Citation: LIN Xue-Qiang, LIU Wei, ZHANG Jing, DONG Shuai, ZHANG Hai-Long, LI Xiao-Bo, XU Chuan-Chuan, LU Min-Xu. Characteristics of Corrosion Scale of 3Cr Steel at High Temperature and Pressure in an O2 and CO2 Environment[J]. Acta Physico-Chimica Sinica, ;2013, 29(11): 2405-2414. doi: 10.3866/PKU.WHXB201309171 shu

Characteristics of Corrosion Scale of 3Cr Steel at High Temperature and Pressure in an O2 and CO2 Environment

  • Received Date: 9 July 2013
    Available Online: 17 September 2013

  • The corrosion behavior of 3Cr steel in atmospheres composed of only O2 or CO2 or a combination of O2 and CO2 was investigated using an autoclave. The characteristics of the corrosion scale of the 3Cr steel were investigated by X-ray diffraction (XRD), scanning electron microscopy (SEM), energy dispersive X-ray spectrometry (EDS), and electrochemical methods. The corrosion scale developed in the combined O2 and CO2 atmosphere was composed of FeCO3, Fe2O3, and Fe3O4, and had a loose texture with a large number of pores. The surface and subsurface corrosion film resistance (Rf1, Rf2) and charge transfer resistance (Rt) were all lower than those found in samples treated in only CO2 or O2 atmospheres. The double-layer capacitance (Cdl) and corrosion film capacitance (Cf1, Cf2) were higher for the sample treated in the combined O2 and CO2 atmosphere than for those treated in only CO2 or O2 atmospheres. The resistance to formation of a corrosion film on the 3Cr steel in the combined O2and CO2 atmosphere was significantly lower than in the CO2 only atmosphere. The corrosion mechanism of 3Cr steel is proposed: In the O2 and CO2 environment the corrosion is proceed by the formation of several corrosion products causing a loose film to develop. The Cr(OH)3 layer which can greatly improve the protection of the corrosion film formed in a CO2 only corrosion environment is not found in the O2 and CO2 environment, thus promoted the corrosion process of hydrogen evolutional and oxidation corrosion in acid medium.

  • 加载中
    1. [1]

      (1) Rogne, T.; Steinsmo, U.; Eggen, T. G. Corrosion of C-Mn-steeland 0.5% Cr steel in Flowing CO2 Saturated Brines Sistance ofLow-alloy SteelWell Tubing in Seawater Injection Service. InNACE International-Corrosion 1996 Conference and Expo,Corrosion 1996, Denver, Colorado, March 24-29, 1996; NACEInternational: Houston, USA, 1996; paper No.96033.

    2. [2]

      (2) Inaba, H.; Kimura, M.; Yokokawa, H. Corrosion Sci. 1996, 38 (9), 1449. doi: 10.1016/0010-938X(96)00032-7

    3. [3]

      (3) Nice, P.; Ueda, M. The Effect of Microstructure and ChromiumAlloying Content to the Corrosion Resistance of Low-alloySteelWell Tubing in Seawater Injection Service. In NACE International-Corrosion 1998 Conference and Expo, Corrosion1998, San Die , California, USA, March 22-27, 1998; NACEInternational: Houston, USA, 1998; paper No. 98003.

    4. [4]

      (4) Takabe, H.; Ueda, M. The Formation Behavior of CorrosionProtective Films of Low Cr Bearing Steels in CO2Environments. In NACE International-Corrosion 2001 Conference and Expo, Corrosion 2001, Houston, Texas, USA:March 11-16, 2001; NACE International: Houston, USA, 2001;paper No. 01066.

    5. [5]

      (5) Chen, C. F.; Lu, M. X.; Sun, D. B.; Zhang, Z. H.; Chang,W.Corrosion 2005, 61, 594. doi: 10.5006/1.3278195

    6. [6]

      (6) Nyborg, R.; Dugstad, A. Mesa Corrosion Attack in Carbon Steeland 0.5% Chromium Steel. In NACE International-Corrosion 1998 Conference and Expo, Corrosion 1998, San Die ,California, USA, March 22-27, 1998; NACE International:Houston, USA, 1998; paper No. 98029.

    7. [7]

      (7) Sun, Y. T.; Cheng, P.; Ma, Z. H.; Fu, Z. Y. Corrosion & Protection 2012, 33 (3), 218. [孙永涛, 程鹏, 马增华, 付朝阳. 腐蚀与防护, 2012, 33 (3), 218.]

    8. [8]

      (8) Wang, F. P.; Zhang, X. Y.; Lei, L. C.; Du, Y. L. Acta Metall. Sin.2000, 36 (1), 55. [王凤平, 张学元, 雷良才, 杜元龙. 金属学报, 2000, 36 (1), 55.]

    9. [9]

      (9) Yang, D. J.; Shen, Z. S. Corrosion Science of Metal, 2nd ed.;Metallurgy Industry Press: Beijing, 1999; p 124. [杨德钧, 沈卓身. 金属腐蚀学. 第2 版. 北京: 冶金工业出版社, 1999: 124.]

    10. [10]

      (10) Zhang, G. A.; Lu, M. X.;Wu, Y. S. Chin. J. Mater. Res. 2005,19, 537. [张国安, 路民旭, 吴萌顺. 材料研究学报, 2005, 19,537.]

    11. [11]

      (11) Chen, C. F.; Lu, M. X.; Zhao, G. X.; Bai, Z. Q.; Yan, M. L.;Yang, Y. Q. Acta Metall Sin. 2002, 38, 411. [陈长风, 路民旭,赵国仙, 白真权, 严密林, 杨延清. 金属学报, 2002, 38, 411.]

    12. [12]

      (12) Sun, J. B.; Liu,W.; Chang,W.; Zhang, Z. H.; Li, Z. T.; Yu, T.;Lu, M. X. Acta Metall Sin. 2009, 45, 84. [孙建波, 柳伟,常炜, 张忠铧, 李忠涛, 于湉, 路民旭. 金属学报, 2009, 45,84.]

    13. [13]

      (13) Gao, M.; Pang, X.; Gao, K. Corrosion Sci. 2011, 53, 557. doi: 10.1016/j.corsci.2010.09.060

    14. [14]

      (14) Cao, C. N. Electrochemical Impedance Spectroscopy Introduction; Science Press: Beijing, 2002; pp 45-75. [曹楚南. 电化学阻抗谱导论. 北京: 科学出版社, 2002: 45-75.]

    15. [15]

      (15) Caridade, C. G.; Pereira, I. M. S.; Bertt, C. M. A.Electrochemical Acta 2004, 49, 785. doi: 10.1016/j.electacta.2003.09.032

    16. [16]

      (16) Li, J. F.; Zhang, Z.; Cheng, Y. L.; Cao, F. H.;Wang, J. M.;Zhang, J. Q.; Cao, C. N. Acta MetallSin. 2002, 38 (7), 760. [李劲风, 张昭, 程英亮, 曹发和, 王建明, 张鉴清, 曹楚南. 金属学报, 2002, 38 (7), 760.]

    17. [17]

      (17) Xu, L. Y.; Cheng, Y. F. Corrosion Sci. 2009, 51, 2330. doi: 10.1016/j.corsci.2009.06.005

    18. [18]

      (18) Cai, F.; Liu,W.; Fan, X. H.; Zhang, J.; Lu, M. X. Acta Phys. -Chim. Sin. 2013, 29, 1003. [蔡峰, 柳伟, 樊学华,张晶, 路民旭. 物理化学学报, 2013, 29, 1003.] doi: 10.3866/PKU.WHXB201302251

    19. [19]

      (19) Miranda, E.; Bethencourt, M.; Botana, F. J.; Cano, M. J.;Aanchez-Amaya, J. M.; Corzo, A.; Carciade Lomas, J.;Faradean, M. L.; Ollivier, B. Corrosion Sci. 2006, 48, 2417. doi: 10.1016/j.corsci.2005.09.005

    20. [20]

      (20) Liu,W.; Zhao, Y. L.; Lu, M. X. Acta Phys. -Chim. Sin. 2008, 24,393. [柳伟, 赵艳亮, 路民旭. 物理化学学报, 2008, 24,393.] doi: 10.3866/PKU.WHXB20080307

    21. [21]

      (21) Zhang, J.; Liu,W.; Lin, X. Q.; Dong, S.; Lu, S. L,; Yang, C.;Wang, T. T.; Lu, M. X. Corrosion Behavior and Mechanism ofN80 Steel under High Temperature and High Pressure CO2-O2Coexisting Condition. In NACE International-Corrosion 2013 Conference and Expo, Corrosion 2013, Orlando, Florida, USA,March 17-21, 2013; NACE International: Houston, USA,2013; paper No. 2479.


  • 加载中
    1. [1]

      Shuyong Zhang Shu'e Song . Ideological and Political Case Design of Experiment of Corrosion and Protection Linking with National Major Projects. University Chemistry, 2024, 39(2): 57-60. doi: 10.3866/PKU.DXHX202304078

    2. [2]

      Yong Zhou Jia Guo Yun Xiong Luying He Hui Li . Comprehensive Teaching Experiment on Electrochemical Corrosion in Galvanic Cell for Chemical Safety and Environmental Protection Course. University Chemistry, 2024, 39(7): 330-336. doi: 10.3866/PKU.DXHX202310109

    3. [3]

      Li Jiang Changzheng Chen Yang Su Hao Song Yanmao Dong Yan Yuan Li Li . Electrochemical Synthesis of Polyaniline and Its Anticorrosive Application: Improvement and Innovative Design of the “Chemical Synthesis of Polyaniline” Experiment. University Chemistry, 2024, 39(3): 336-344. doi: 10.3866/PKU.DXHX202309002

    4. [4]

      Renshu Huang Jinli Chen Xingfa Chen Tianqi Yu Huyi Yu Kaien Li Bin Li Shibin Yin . Synergized oxygen vacancies with Mn2O3@CeO2 heterojunction as high current density catalysts for Li–O2 batteries. Chinese Journal of Structural Chemistry, 2023, 42(11): 100171-100171. doi: 10.1016/j.cjsc.2023.100171

    5. [5]

      Wenlong LIXinyu JIAJie LINGMengdan MAAnning ZHOU . Photothermal catalytic CO2 hydrogenation over a Mg-doped In2O3-x catalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 919-929. doi: 10.11862/CJIC.20230421

    6. [6]

      Xiuzheng DengChanghai LiuXiaotong YanJingshan FanQian LiangZhongyu Li . Carbon dots anchored NiAl-LDH@In2O3 hierarchical nanotubes for promoting selective CO2 photoreduction into CH4. Chinese Chemical Letters, 2024, 35(6): 108942-. doi: 10.1016/j.cclet.2023.108942

    7. [7]

      Hongyi LIAimin WULiuyang ZHAOXinpeng LIUFengqin CHENAikui LIHao HUANG . Effect of Y(PO3)3 double-coating modification on the electrochemical properties of Li[Ni0.8Co0.15Al0.05]O2. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1320-1328. doi: 10.11862/CJIC.20230480

    8. [8]

      Xiuzheng DengYi KeJiawen DingYingtang ZhouHui HuangQian LiangZhenhui Kang . Construction of ZnO@CDs@Co3O4 sandwich heterostructure with multi-interfacial electron-transfer toward enhanced photocatalytic CO2 reduction. Chinese Chemical Letters, 2024, 35(4): 109064-. doi: 10.1016/j.cclet.2023.109064

    9. [9]

      Maomao Liu Guizeng Liang Ningce Zhang Tao Li Lipeng Diao Ping Lu Xiaoliang Zhao Daohao Li Dongjiang Yang . Electron-rich Ni2+ in Ni3S2 boosting electrocatalytic CO2 reduction to formate and syngas. Chinese Journal of Structural Chemistry, 2024, 43(8): 100359-100359. doi: 10.1016/j.cjsc.2024.100359

    10. [10]

      Liang Ma Zhou Li Zhiqiang Jiang Xiaofeng Wu Shixin Chang Sónia A. C. Carabineiro Kangle Lv . Effect of precursors on the structure and photocatalytic performance of g-C3N4 for NO oxidation and CO2 reduction. Chinese Journal of Structural Chemistry, 2024, 43(11): 100416-100416. doi: 10.1016/j.cjsc.2023.100416

    11. [11]

      Xuejiao Wang Suiying Dong Kezhen Qi Vadim Popkov Xianglin Xiang . Photocatalytic CO2 Reduction by Modified g-C3N4. Acta Physico-Chimica Sinica, 2024, 40(12): 2408005-. doi: 10.3866/PKU.WHXB202408005

    12. [12]

      Tong Zhou Xue Liu Liang Zhao Mingtao Qiao Wanying Lei . Efficient Photocatalytic H2O2 Production and Cr(VI) Reduction over a Hierarchical Ti3C2/In4SnS8 Schottky Junction. Acta Physico-Chimica Sinica, 2024, 40(10): 2309020-. doi: 10.3866/PKU.WHXB202309020

    13. [13]

      Fei Xie Chengcheng Yuan Haiyan Tan Alireza Z. Moshfegh Bicheng Zhu Jiaguo Yud带中心调控过渡金属单原子负载COF吸附O2的理论计算研究. Acta Physico-Chimica Sinica, 2024, 40(11): 2407013-. doi: 10.3866/PKU.WHXB202407013

    14. [14]

      Tianbo JiaLili WangZhouhao ZhuBaikang ZhuYingtang ZhouGuoxing ZhuMingshan ZhuHengcong Tao . Modulating the degree of O vacancy defects to achieve selective control of electrochemical CO2 reduction products. Chinese Chemical Letters, 2024, 35(5): 108692-. doi: 10.1016/j.cclet.2023.108692

    15. [15]

      Muhammad Humayun Mohamed Bououdina Abbas Khan Sajjad Ali Chundong Wang . Designing single atom catalysts for exceptional electrochemical CO2 reduction. Chinese Journal of Structural Chemistry, 2024, 43(1): 100193-100193. doi: 10.1016/j.cjsc.2023.100193

    16. [16]

      Hong Dong Feng-Ming Zhang . Covalent organic frameworks for artificial photosynthetic diluted CO2 reduction. Chinese Journal of Structural Chemistry, 2024, 43(7): 100307-100307. doi: 10.1016/j.cjsc.2024.100307

    17. [17]

      Ping Wang Tianbao Zhang Zhenxing Li . Reconstruction mechanism of Cu surface in CO2 reduction process. Chinese Journal of Structural Chemistry, 2024, 43(8): 100328-100328. doi: 10.1016/j.cjsc.2024.100328

    18. [18]

      Zixuan ZhuXianjin ShiYongfang RaoYu Huang . Recent progress of MgO-based materials in CO2 adsorption and conversion: Modification methods, reaction condition, and CO2 hydrogenation. Chinese Chemical Letters, 2024, 35(5): 108954-. doi: 10.1016/j.cclet.2023.108954

    19. [19]

      Jianyu Qin Yuejiao An Yanfeng ZhangIn Situ Assembled ZnWO4/g-C3N4 S-Scheme Heterojunction with Nitrogen Defect for CO2 Photoreduction. Acta Physico-Chimica Sinica, 2024, 40(12): 2408002-. doi: 10.3866/PKU.WHXB202408002

    20. [20]

      Juan Yuan Bin Zhang Jinping Wu Mengfan Wang . Design of a Comprehensive Experiment on Preparation and Characterization of Cu2(Salen)2 Nanomaterials with Two Distinct Morphologies. University Chemistry, 2024, 39(10): 420-425. doi: 10.3866/PKU.DXHX202402014

Metrics
  • PDF Downloads(520)
  • Abstract views(635)
  • HTML views(13)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return