Citation: LIN Xue-Qiang, LIU Wei, ZHANG Jing, DONG Shuai, ZHANG Hai-Long, LI Xiao-Bo, XU Chuan-Chuan, LU Min-Xu. Characteristics of Corrosion Scale of 3Cr Steel at High Temperature and Pressure in an O2 and CO2 Environment[J]. Acta Physico-Chimica Sinica, ;2013, 29(11): 2405-2414. doi: 10.3866/PKU.WHXB201309171
-
The corrosion behavior of 3Cr steel in atmospheres composed of only O2 or CO2 or a combination of O2 and CO2 was investigated using an autoclave. The characteristics of the corrosion scale of the 3Cr steel were investigated by X-ray diffraction (XRD), scanning electron microscopy (SEM), energy dispersive X-ray spectrometry (EDS), and electrochemical methods. The corrosion scale developed in the combined O2 and CO2 atmosphere was composed of FeCO3, Fe2O3, and Fe3O4, and had a loose texture with a large number of pores. The surface and subsurface corrosion film resistance (Rf1, Rf2) and charge transfer resistance (Rt) were all lower than those found in samples treated in only CO2 or O2 atmospheres. The double-layer capacitance (Cdl) and corrosion film capacitance (Cf1, Cf2) were higher for the sample treated in the combined O2 and CO2 atmosphere than for those treated in only CO2 or O2 atmospheres. The resistance to formation of a corrosion film on the 3Cr steel in the combined O2and CO2 atmosphere was significantly lower than in the CO2 only atmosphere. The corrosion mechanism of 3Cr steel is proposed: In the O2 and CO2 environment the corrosion is proceed by the formation of several corrosion products causing a loose film to develop. The Cr(OH)3 layer which can greatly improve the protection of the corrosion film formed in a CO2 only corrosion environment is not found in the O2 and CO2 environment, thus promoted the corrosion process of hydrogen evolutional and oxidation corrosion in acid medium.
-
Keywords:
-
O2 corrosion
, - CO2 corrosion,
- 3Cr steel,
- Corrosion rate,
- Corrosion morphology
-
-
-
[1]
(1) Rogne, T.; Steinsmo, U.; Eggen, T. G. Corrosion of C-Mn-steeland 0.5% Cr steel in Flowing CO2 Saturated Brines Sistance ofLow-alloy SteelWell Tubing in Seawater Injection Service. InNACE International-Corrosion 1996 Conference and Expo,Corrosion 1996, Denver, Colorado, March 24-29, 1996; NACEInternational: Houston, USA, 1996; paper No.96033.
-
[2]
(2) Inaba, H.; Kimura, M.; Yokokawa, H. Corrosion Sci. 1996, 38 (9), 1449. doi: 10.1016/0010-938X(96)00032-7
-
[3]
(3) Nice, P.; Ueda, M. The Effect of Microstructure and ChromiumAlloying Content to the Corrosion Resistance of Low-alloySteelWell Tubing in Seawater Injection Service. In NACE International-Corrosion 1998 Conference and Expo, Corrosion1998, San Die , California, USA, March 22-27, 1998; NACEInternational: Houston, USA, 1998; paper No. 98003.
-
[4]
(4) Takabe, H.; Ueda, M. The Formation Behavior of CorrosionProtective Films of Low Cr Bearing Steels in CO2Environments. In NACE International-Corrosion 2001 Conference and Expo, Corrosion 2001, Houston, Texas, USA:March 11-16, 2001; NACE International: Houston, USA, 2001;paper No. 01066.
-
[5]
(5) Chen, C. F.; Lu, M. X.; Sun, D. B.; Zhang, Z. H.; Chang,W.Corrosion 2005, 61, 594. doi: 10.5006/1.3278195
-
[6]
(6) Nyborg, R.; Dugstad, A. Mesa Corrosion Attack in Carbon Steeland 0.5% Chromium Steel. In NACE International-Corrosion 1998 Conference and Expo, Corrosion 1998, San Die ,California, USA, March 22-27, 1998; NACE International:Houston, USA, 1998; paper No. 98029.
-
[7]
(7) Sun, Y. T.; Cheng, P.; Ma, Z. H.; Fu, Z. Y. Corrosion & Protection 2012, 33 (3), 218. [孙永涛, 程鹏, 马增华, 付朝阳. 腐蚀与防护, 2012, 33 (3), 218.]
-
[8]
(8) Wang, F. P.; Zhang, X. Y.; Lei, L. C.; Du, Y. L. Acta Metall. Sin.2000, 36 (1), 55. [王凤平, 张学元, 雷良才, 杜元龙. 金属学报, 2000, 36 (1), 55.]
-
[9]
(9) Yang, D. J.; Shen, Z. S. Corrosion Science of Metal, 2nd ed.;Metallurgy Industry Press: Beijing, 1999; p 124. [杨德钧, 沈卓身. 金属腐蚀学. 第2 版. 北京: 冶金工业出版社, 1999: 124.]
-
[10]
(10) Zhang, G. A.; Lu, M. X.;Wu, Y. S. Chin. J. Mater. Res. 2005,19, 537. [张国安, 路民旭, 吴萌顺. 材料研究学报, 2005, 19,537.]
-
[11]
(11) Chen, C. F.; Lu, M. X.; Zhao, G. X.; Bai, Z. Q.; Yan, M. L.;Yang, Y. Q. Acta Metall Sin. 2002, 38, 411. [陈长风, 路民旭,赵国仙, 白真权, 严密林, 杨延清. 金属学报, 2002, 38, 411.]
-
[12]
(12) Sun, J. B.; Liu,W.; Chang,W.; Zhang, Z. H.; Li, Z. T.; Yu, T.;Lu, M. X. Acta Metall Sin. 2009, 45, 84. [孙建波, 柳伟,常炜, 张忠铧, 李忠涛, 于湉, 路民旭. 金属学报, 2009, 45,84.]
-
[13]
(13) Gao, M.; Pang, X.; Gao, K. Corrosion Sci. 2011, 53, 557. doi: 10.1016/j.corsci.2010.09.060
-
[14]
(14) Cao, C. N. Electrochemical Impedance Spectroscopy Introduction; Science Press: Beijing, 2002; pp 45-75. [曹楚南. 电化学阻抗谱导论. 北京: 科学出版社, 2002: 45-75.]
-
[15]
(15) Caridade, C. G.; Pereira, I. M. S.; Bertt, C. M. A.Electrochemical Acta 2004, 49, 785. doi: 10.1016/j.electacta.2003.09.032
-
[16]
(16) Li, J. F.; Zhang, Z.; Cheng, Y. L.; Cao, F. H.;Wang, J. M.;Zhang, J. Q.; Cao, C. N. Acta MetallSin. 2002, 38 (7), 760. [李劲风, 张昭, 程英亮, 曹发和, 王建明, 张鉴清, 曹楚南. 金属学报, 2002, 38 (7), 760.]
-
[17]
(17) Xu, L. Y.; Cheng, Y. F. Corrosion Sci. 2009, 51, 2330. doi: 10.1016/j.corsci.2009.06.005
-
[18]
(18) Cai, F.; Liu,W.; Fan, X. H.; Zhang, J.; Lu, M. X. Acta Phys. -Chim. Sin. 2013, 29, 1003. [蔡峰, 柳伟, 樊学华,张晶, 路民旭. 物理化学学报, 2013, 29, 1003.] doi: 10.3866/PKU.WHXB201302251
-
[19]
(19) Miranda, E.; Bethencourt, M.; Botana, F. J.; Cano, M. J.;Aanchez-Amaya, J. M.; Corzo, A.; Carciade Lomas, J.;Faradean, M. L.; Ollivier, B. Corrosion Sci. 2006, 48, 2417. doi: 10.1016/j.corsci.2005.09.005
-
[20]
(20) Liu,W.; Zhao, Y. L.; Lu, M. X. Acta Phys. -Chim. Sin. 2008, 24,393. [柳伟, 赵艳亮, 路民旭. 物理化学学报, 2008, 24,393.] doi: 10.3866/PKU.WHXB20080307
-
[21]
(21) Zhang, J.; Liu,W.; Lin, X. Q.; Dong, S.; Lu, S. L,; Yang, C.;Wang, T. T.; Lu, M. X. Corrosion Behavior and Mechanism ofN80 Steel under High Temperature and High Pressure CO2-O2Coexisting Condition. In NACE International-Corrosion 2013 Conference and Expo, Corrosion 2013, Orlando, Florida, USA,March 17-21, 2013; NACE International: Houston, USA,2013; paper No. 2479.
-
[1]
-
-
[1]
Shuyong Zhang , Shu'e Song . Ideological and Political Case Design of Experiment of Corrosion and Protection Linking with National Major Projects. University Chemistry, 2024, 39(2): 57-60. doi: 10.3866/PKU.DXHX202304078
-
[2]
Yong Zhou , Jia Guo , Yun Xiong , Luying He , Hui Li . Comprehensive Teaching Experiment on Electrochemical Corrosion in Galvanic Cell for Chemical Safety and Environmental Protection Course. University Chemistry, 2024, 39(7): 330-336. doi: 10.3866/PKU.DXHX202310109
-
[3]
Li Jiang , Changzheng Chen , Yang Su , Hao Song , Yanmao Dong , Yan Yuan , Li Li . Electrochemical Synthesis of Polyaniline and Its Anticorrosive Application: Improvement and Innovative Design of the “Chemical Synthesis of Polyaniline” Experiment. University Chemistry, 2024, 39(3): 336-344. doi: 10.3866/PKU.DXHX202309002
-
[4]
Renshu Huang , Jinli Chen , Xingfa Chen , Tianqi Yu , Huyi Yu , Kaien Li , Bin Li , Shibin Yin . Synergized oxygen vacancies with Mn2O3@CeO2 heterojunction as high current density catalysts for Li–O2 batteries. Chinese Journal of Structural Chemistry, 2023, 42(11): 100171-100171. doi: 10.1016/j.cjsc.2023.100171
-
[5]
Wenlong LI , Xinyu JIA , Jie LING , Mengdan MA , Anning ZHOU . Photothermal catalytic CO2 hydrogenation over a Mg-doped In2O3-x catalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 919-929. doi: 10.11862/CJIC.20230421
-
[6]
Xiuzheng Deng , Changhai Liu , Xiaotong Yan , Jingshan Fan , Qian Liang , Zhongyu Li . Carbon dots anchored NiAl-LDH@In2O3 hierarchical nanotubes for promoting selective CO2 photoreduction into CH4. Chinese Chemical Letters, 2024, 35(6): 108942-. doi: 10.1016/j.cclet.2023.108942
-
[7]
Hongyi LI , Aimin WU , Liuyang ZHAO , Xinpeng LIU , Fengqin CHEN , Aikui LI , Hao HUANG . Effect of Y(PO3)3 double-coating modification on the electrochemical properties of Li[Ni0.8Co0.15Al0.05]O2. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1320-1328. doi: 10.11862/CJIC.20230480
-
[8]
Xiuzheng Deng , Yi Ke , Jiawen Ding , Yingtang Zhou , Hui Huang , Qian Liang , Zhenhui Kang . Construction of ZnO@CDs@Co3O4 sandwich heterostructure with multi-interfacial electron-transfer toward enhanced photocatalytic CO2 reduction. Chinese Chemical Letters, 2024, 35(4): 109064-. doi: 10.1016/j.cclet.2023.109064
-
[9]
Maomao Liu , Guizeng Liang , Ningce Zhang , Tao Li , Lipeng Diao , Ping Lu , Xiaoliang Zhao , Daohao Li , Dongjiang Yang . Electron-rich Ni2+ in Ni3S2 boosting electrocatalytic CO2 reduction to formate and syngas. Chinese Journal of Structural Chemistry, 2024, 43(8): 100359-100359. doi: 10.1016/j.cjsc.2024.100359
-
[10]
Liang Ma , Zhou Li , Zhiqiang Jiang , Xiaofeng Wu , Shixin Chang , Sónia A. C. Carabineiro , Kangle Lv . Effect of precursors on the structure and photocatalytic performance of g-C3N4 for NO oxidation and CO2 reduction. Chinese Journal of Structural Chemistry, 2024, 43(11): 100416-100416. doi: 10.1016/j.cjsc.2023.100416
-
[11]
Xuejiao Wang , Suiying Dong , Kezhen Qi , Vadim Popkov , Xianglin Xiang . Photocatalytic CO2 Reduction by Modified g-C3N4. Acta Physico-Chimica Sinica, 2024, 40(12): 2408005-. doi: 10.3866/PKU.WHXB202408005
-
[12]
Tong Zhou , Xue Liu , Liang Zhao , Mingtao Qiao , Wanying Lei . Efficient Photocatalytic H2O2 Production and Cr(VI) Reduction over a Hierarchical Ti3C2/In4SnS8 Schottky Junction. Acta Physico-Chimica Sinica, 2024, 40(10): 2309020-. doi: 10.3866/PKU.WHXB202309020
-
[13]
Fei Xie , Chengcheng Yuan , Haiyan Tan , Alireza Z. Moshfegh , Bicheng Zhu , Jiaguo Yu . d带中心调控过渡金属单原子负载COF吸附O2的理论计算研究. Acta Physico-Chimica Sinica, 2024, 40(11): 2407013-. doi: 10.3866/PKU.WHXB202407013
-
[14]
Tianbo Jia , Lili Wang , Zhouhao Zhu , Baikang Zhu , Yingtang Zhou , Guoxing Zhu , Mingshan Zhu , Hengcong Tao . Modulating the degree of O vacancy defects to achieve selective control of electrochemical CO2 reduction products. Chinese Chemical Letters, 2024, 35(5): 108692-. doi: 10.1016/j.cclet.2023.108692
-
[15]
Muhammad Humayun , Mohamed Bououdina , Abbas Khan , Sajjad Ali , Chundong Wang . Designing single atom catalysts for exceptional electrochemical CO2 reduction. Chinese Journal of Structural Chemistry, 2024, 43(1): 100193-100193. doi: 10.1016/j.cjsc.2023.100193
-
[16]
Hong Dong , Feng-Ming Zhang . Covalent organic frameworks for artificial photosynthetic diluted CO2 reduction. Chinese Journal of Structural Chemistry, 2024, 43(7): 100307-100307. doi: 10.1016/j.cjsc.2024.100307
-
[17]
Ping Wang , Tianbao Zhang , Zhenxing Li . Reconstruction mechanism of Cu surface in CO2 reduction process. Chinese Journal of Structural Chemistry, 2024, 43(8): 100328-100328. doi: 10.1016/j.cjsc.2024.100328
-
[18]
Zixuan Zhu , Xianjin Shi , Yongfang Rao , Yu Huang . Recent progress of MgO-based materials in CO2 adsorption and conversion: Modification methods, reaction condition, and CO2 hydrogenation. Chinese Chemical Letters, 2024, 35(5): 108954-. doi: 10.1016/j.cclet.2023.108954
-
[19]
Jianyu Qin , Yuejiao An , Yanfeng Zhang . In Situ Assembled ZnWO4/g-C3N4 S-Scheme Heterojunction with Nitrogen Defect for CO2 Photoreduction. Acta Physico-Chimica Sinica, 2024, 40(12): 2408002-. doi: 10.3866/PKU.WHXB202408002
-
[20]
Juan Yuan , Bin Zhang , Jinping Wu , Mengfan Wang . Design of a Comprehensive Experiment on Preparation and Characterization of Cu2(Salen)2 Nanomaterials with Two Distinct Morphologies. University Chemistry, 2024, 39(10): 420-425. doi: 10.3866/PKU.DXHX202402014
-
[1]
Metrics
- PDF Downloads(520)
- Abstract views(635)
- HTML views(13)