Citation:
WANG You-Juan, ZHAO Dong-Bo, RONG Chun-Ying, LIU Shu-Bin. Towards Understanding the Origin and Nature of the Conformational Stability of Water Clusters:a Density Functional Theory and Quantum Molecular Dynamics Study[J]. Acta Physico-Chimica Sinica,
;2013, 29(10): 2173-2179.
doi:
10.3866/PKU.WHXB201308272
-
To find out what interaction dictates the molecular stability is essential, yet still controversial even for simplest molecules. Here, using water cluster as an example, we employ quantum molecular dynamics to generate a total of 185 conformations for octamer water clusters and then employ two energy partition schemes from density functional theory to pinpoint the principles verning their stability. We found that their stability is strongly correlated with steric repulsion and exchange-correlation interactions. Explanations using two different quantities are also proposed (with the correlation coefficient larger than 0.99). This work sheds light to the fundamental understanding towards the origin and nature of molecular conformational stability for water clusters and other molecular complexes formed through intermolecular interactions.
-
-
-
[1]
(1) Liu, S. B. J. Phys. Chem. A 2013, 117, 962. doi: 10.1021/jp312521z
-
[2]
(2) Pophristic, V.; odman, L. Nature 2001, 411, 565. doi: 10.1038/35079036
-
[3]
(3) Bickelhaupt, F. M.; Baerends, E. J. Angew. Chem. Int. Edit.2003, 42, 4183.
-
[4]
(4) Weinhold, F. Angew. Chem. Int. Edit. 2003, 42, 4188.
-
[5]
(5) Mo, Y. R. Nat. Chem. 2010, 2, 666. doi: 10.1038/nchem.721
-
[6]
(6) Mo, Y.; Gao, J. Accounts Chem. Res. 2007, 40, 113. doi: 10.1021/ar068073w
-
[7]
(7) Parr, R. G.; Yang, W. Density Functional Theory of Atoms Molecules; Oxford University Press: NewYork, 1989.
-
[8]
(8) Geerlings, P.; De Proft, F.; Langenaeker, W. Chem. Rev. 2003,103, 1793. doi: 10.1021/cr990029p
-
[9]
(9) Liu, S. B. Acta Phys. -Chim. Sin. 2009, 25, 590. [刘述斌. 物理化学学报, 2009, 25, 590.] doi: 10.3866/PKU.WHXB20090332
-
[10]
(10) Levy, M.; Perdew, J. P. Phys. Rev. A 1985, 32, 2010. doi: 10.1103/PhysRevA.32.2010
-
[11]
(11) Liu, S. B.; Parr, R. G. Phys. Rev. A 1996, 53, 2211. doi: 10.1103/PhysRevA.53.2211
-
[12]
(12) Liu, S. B.; Nagy, A.; Parr, R. G. Phys. Rev. A 1999, 59, 1131.doi: 10.1103/PhysRevA.59.1131
-
[13]
(13) Liu, S. B.; Morrison, R. C.; Parr, R. G. J. Chem. Phys. 2006,125, 174109. doi: 10.1063/1.2378769
-
[14]
(14) Liu, S. B. J. Chem. Phys. 2007, 126, 244103. doi: 10.1063/1.2747247
-
[15]
(15) March, N. H. Phys. Lett. A 1986, 113, 476. doi: 10.1016/0375-9601(86)90123-4
-
[16]
(16) Holas, A.; March, N. H. Phys. Rev. A 1991, 44, 5521. doi: 10.1103/PhysRevA.44.5521
-
[17]
(17) von Weizsäcker, C. F. Z. Phys. 1935, 96, 431. doi: 10.1007/BF01337700
-
[18]
(18) Weisskopf, V. F. Science 1975, 187, 605. doi: 10.1126/science.187.4177.605
-
[19]
(19) Liu, S. B. Phys. Rev. A 1996, 54, 4863. doi: 10.1103/PhysRevA.54.4863
-
[20]
(20) Liu, S. B.; Parr, R. G. Phys. Rev. A 1997, 55, 1792. doi: 10.1103/PhysRevA.55.1792
-
[21]
(21) Tsirelson, V. G.; Stash, A. I.; Liu, S. B. J. Chem. Phys. 2010,133, 114110. doi: 10.1063/1.3492377
-
[22]
(22) Liu, S. B. J. Chem. Phys. 2007, 126, 191107. doi: 10.1063/1.2741244
-
[23]
(23) Esquivel, R. O.; Liu, S. B.; Angulo, J. C.; Dehesa, J. S.; Antolín,J.; Molina-Espíritu, M. J. Phys. Chem. A 2011, 115, 4406. doi: 10.1021/jp1095272
-
[24]
(24) Liu, S. B.; vind, N. J. Phys. Chem. A 2008, 112, 6690. doi: 10.1021/jp800376a
-
[25]
(25) Liu, S. B.; vind, N.; Pedersen, L. G. J. Chem. Phys. 2008,129, 094104. doi: 10.1063/1.2976767
-
[26]
(26) Liu, S. B.; Hu, H.; Pedersen, L. G. J. Phys. Chem. A 2010, 114,5913. doi: 10.1021/jp101329f
-
[27]
(27) Ess, D. H.; Liu, S. B.; De Proft, F. J. Phys. Chem. A 2010, 114,12952. doi: 10.1021/jp108577g
-
[28]
(28) Huang, Y.; Zhong, A. G.; Yang, Q.; Liu, S. B. J. Chem. Phys.2011, 134, 084103. doi: 10.1063/1.3555760
-
[29]
(29) Zhao, D. B.; Rong, C. Y.; Jenkins, S.; Kirk, S. R.; Yin, D. L.;Liu, S. B. Acta Phys. -Chim. Sin. 2013, 29, 43. [赵东波, 荣春英,苏曼,苏文,尹笃林, 刘述斌.物理化学学报, 2013, 29,43.] doi: 10.3866/PKU.WHXB201211121
-
[30]
(30) Tsirelson, V. G.; Stash, A. I.; Karasiev, V. V.; Liu, S. B. Comp. Theor. Chem. 2013, 1006, 92. doi: 10.1016/j.comptc.2012.11.015
-
[31]
(31) Torrent-Sucarrat, M.; Liu, S. B.; De Proft, F. J. Phys. Chem. A2009, 113, 3698. doi: 10.1021/jp8096583
-
[32]
(32) Liu, S. B. J. Chem. Sci. 2005, 117, 477; Zhong, A. G.; Rong, C.Y.; Liu, S. B. J. Phys. Chem. A 2007, 111, 3132. doi: 10.1007/BF02708352
-
[33]
(33) Valiev, M.; Bylaska, E. J.; vind, N.; Kowalski, K.; Straatsma,T. P.; Van Dam, H. J. J.; Wang, D.; Nieplocha, J.; Apra, E.;Windus, T. L.; de Jong, W. Comput. Phys. Commun. 2010, 181,1477.
-
[34]
(34) Maeda, S.; Ohno, K. J. Phys. Chem. A 2007, 111, 4527. doi: 10.1021/jp070606a
-
[35]
(35) Zhao, Y.; Truhlar, D. G. Theor. Chem. Acc. 2008, 120, 215. doi: 10.1007/s00214-007-0310-x
-
[36]
(36) Frisch, M. J.; Trucks, G. W.; Schlegel, H. B.; et al . Gaussian 09,Revision C. 01; Gaussian, Inc.: Wallingford, CT, 2009.
-
[37]
(37) Kitaura, K.; Morokuma, K. Int. J. Quantum Chem. 1976, 10,325.
-
[1]
-
-
-
[1]
Jie ZHAO , Huili ZHANG , Xiaoqing LU , Zhaojie WANG . Theoretical calculations of CO2 capture and separation by functional groups modified 2D covalent organic framework. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 275-283. doi: 10.11862/CJIC.20240213
-
[2]
Jie ZHAO , Sen LIU , Qikang YIN , Xiaoqing LU , Zhaojie WANG . Theoretical calculation of selective adsorption and separation of CO2 by alkali metal modified naphthalene/naphthalenediyne. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 515-522. doi: 10.11862/CJIC.20230385
-
[3]
Xiaochen Zhang , Fei Yu , Jie Ma . 多角度数理模拟在电容去离子中的前沿应用. Acta Physico-Chimica Sinica, 2024, 40(11): 2311026-. doi: 10.3866/PKU.WHXB202311026
-
[4]
Yaling Chen . Basic Theory and Competitive Exam Analysis of Dynamic Isotope Effect. University Chemistry, 2024, 39(8): 403-410. doi: 10.3866/PKU.DXHX202311093
-
[5]
Shule Liu . Application of SPC/E Water Model in Molecular Dynamics Teaching Experiments. University Chemistry, 2024, 39(4): 338-342. doi: 10.3866/PKU.DXHX202310029
-
[6]
Shanghua Li , Malin Li , Xiwen Chi , Xin Yin , Zhaodi Luo , Jihong Yu . 基于高离子迁移动力学的取向ZnQ分子筛保护层实现高稳定水系锌金属负极的构筑. Acta Physico-Chimica Sinica, 2025, 41(1): 2309003-. doi: 10.3866/PKU.WHXB202309003
-
[7]
Jia Zhou . Constructing Potential Energy Surface of Water Molecule by Quantum Chemistry and Machine Learning: Introduction to a Comprehensive Computational Chemistry Experiment. University Chemistry, 2024, 39(3): 351-358. doi: 10.3866/PKU.DXHX202309060
-
[8]
Yiying Yang , Dongju Zhang . Elucidating the Concepts of Thermodynamic Control and Kinetic Control in Chemical Reactions through Theoretical Chemistry Calculations: A Computational Chemistry Experiment on the Diels-Alder Reaction. University Chemistry, 2024, 39(3): 327-335. doi: 10.3866/PKU.DXHX202309074
-
[9]
Yanglin Jiang , Mingqing Chen , Min Liang , Yige Yao , Yan Zhang , Peng Wang , Jianping Zhang . Experimental and Theoretical Investigations of Solvent Polarity Effect on ESIPT Mechanism in 4′-N,N-diethylamino-3-hydroxybenzoflavone. Acta Physico-Chimica Sinica, 2025, 41(2): 100012-. doi: 10.3866/PKU.WHXB202309027
-
[10]
Maitri Bhattacharjee , Rekha Boruah Smriti , R. N. Dutta Purkayastha , Waldemar Maniukiewicz , Shubhamoy Chowdhury , Debasish Maiti , Tamanna Akhtar . Synthesis, structural characterization, bio-activity, and density functional theory calculation on Cu(Ⅱ) complexes with hydrazone-based Schiff base ligands. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1409-1422. doi: 10.11862/CJIC.20240007
-
[11]
Jia Yao , Xiaogang Peng . Theory of Macroscopic Molecular Systems: Theoretical Framework of the Physical Chemistry Course in the Chemistry “101 Plan”. University Chemistry, 2024, 39(10): 27-37. doi: 10.12461/PKU.DXHX202408117
-
[12]
Jinfu Ma , Hui Lu , Jiandong Wu , Zhongli Zou . Teaching Design of Electrochemical Principles Course Based on “Cognitive Laws”: Kinetics of Electron Transfer Steps. University Chemistry, 2024, 39(3): 174-177. doi: 10.3866/PKU.DXHX202309052
-
[13]
Yeyun Zhang , Ling Fan , Yanmei Wang , Zhenfeng Shang . Development and Application of Kinetic Reaction Flasks in Physical Chemistry Experimental Teaching. University Chemistry, 2024, 39(4): 100-106. doi: 10.3866/PKU.DXHX202308044
-
[14]
Yongming Zhu , Huili Hu , Yuanchun Yu , Xudong Li , Peng Gao . Construction and Practice on New Form Stereoscopic Textbook of Electrochemistry for Energy Storage Science and Engineering: Taking Basic Course of Electrochemistry as an Example. University Chemistry, 2024, 39(8): 44-47. doi: 10.3866/PKU.DXHX202312086
-
[15]
Zhiwen HUANG , Qi LIU , Jianping LANG . W/Cu/S cluster-based supramolecular macrocycles and their third-order nonlinear optical responses. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 79-87. doi: 10.11862/CJIC.20240184
-
[16]
Xuzhen Wang , Xinkui Wang , Dongxu Tian , Wei Liu . Enhancing the Comprehensive Quality and Innovation Abilities of Graduate Students through a “Student-Centered, Dual Integration and Dual Drive” Teaching Model: A Case Study in the Course of Chemical Reaction Kinetics. University Chemistry, 2024, 39(6): 160-165. doi: 10.3866/PKU.DXHX202401074
-
[17]
Dexin Tan , Limin Liang , Baoyi Lv , Huiwen Guan , Haicheng Chen , Yanli Wang . Exploring Reverse Teaching Practices in Physical Chemistry Experiment Courses: A Case Study on Chemical Reaction Kinetics. University Chemistry, 2024, 39(11): 79-86. doi: 10.12461/PKU.DXHX202403048
-
[18]
Yue Wu , Jun Li , Bo Zhang , Yan Yang , Haibo Li , Xian-Xi Zhang . Research on Kinetic and Thermodynamic Transformations of Organic-Inorganic Hybrid Materials for Fluorescent Anti-Counterfeiting Application information: Introducing a Comprehensive Chemistry Experiment. University Chemistry, 2024, 39(6): 390-399. doi: 10.3866/PKU.DXHX202403028
-
[19]
Qiqi Li , Su Zhang , Yuting Jiang , Linna Zhu , Nannan Guo , Jing Zhang , Yutong Li , Tong Wei , Zhuangjun Fan . 前驱体机械压实制备高密度活性炭及其致密电容储能性能. Acta Physico-Chimica Sinica, 2025, 41(3): 2406009-. doi: 10.3866/PKU.WHXB202406009
-
[20]
You Wu , Chang Cheng , Kezhen Qi , Bei Cheng , Jianjun Zhang , Jiaguo Yu , Liuyang Zhang . ZnO/D-A共轭聚合物S型异质结高效光催化产H2O2及其电荷转移动力学研究. Acta Physico-Chimica Sinica, 2024, 40(11): 2406027-. doi: 10.3866/PKU.WHXB202406027
-
[1]
Metrics
- PDF Downloads(702)
- Abstract views(1474)
- HTML views(101)