Citation: FAN Xiao-Li, RAN Run-Xin, ZHANG Chao, YANG Yong-Liang. Density Functional Theory Study on the Adsorption of Dodecylthiol on Au(111) Surface[J]. Acta Physico-Chimica Sinica, ;2013, 29(09): 1907-1915. doi: 10.3866/PKU.WHXB201307022 shu

Density Functional Theory Study on the Adsorption of Dodecylthiol on Au(111) Surface

  • Received Date: 6 May 2013
    Available Online: 2 July 2013

    Fund Project: 国家自然科学基金(20903075, 21273172) (20903075, 21273172)高等学校学科创新引智计划(111)(B08040)资助项目 (111)(B08040)

  • By applying the first-principles methods based on density functional theory and the slab model, we have studied the non-dissociative and dissociated adsorptions of a dodecylthiol (C12H25SH) molecule on Au(111) surface. Based on the calculated results, the fate of the H atom has been analyzed, and the longchain adsorption and short-chain adsorption have been compared. We have performed structure optimizations for a series of initial structures with the S atom located on different sites with different tilt angles. This structure optimizations gave two surface structures before and after the dissociation of S―H; the standing-up and lying-down adsorption structures. Our calculations indicate that the C12H25SH molecule prefers to stay on the top site, the corresponding adsorption energies are 0.35-0.38 eV. The dissociated C12H25S group prefers to adsorb on the bri-fcc site, with adsorption energies of 2.01-2.09 eV. We have compared the non-dissociative C12H25SH/Au(111) and dissociated C12H25S/Au(111) with the H atom adsorbing onto Au and desorbing as H2, and found that the non-dissociative adsorption is more stable. The formation energy and the electronic structure showed that the non-dissociative adsorption belongs to the weak chemisorption, whereas the interaction between the S atom and Au surface becomes much stronger following cleavage of the S―H. A comparison of the adsorption of long-chain thiols on Au(111) surface with that of the short-chain thiols, indicates that the adsorption energies of the long-chain thiols are slightly larger, and the distances between the S atomand the surface Au atoms are slightly shorter.

    1. [1]

      (1) Ulman, A. Chem. Rev. 1996, 96, 1533. doi: 10.1021/cr9502357

    2. [2]

      (2) Schreiber, F. Prog. Surf. Sci. 2000, 65, 151. doi: 10.1016/S0079-6816(00)00024-1

    3. [3]

      (3) Schreiber, F. J. Phys.: Condes. Matter 2004, 16, R881.

    4. [4]

      (4) Love, J. C.; Estroff, L. A.; Kriebel, J. K.; Nuzzo, R. G.;Whitesides, G. M. Chem. Rev. 2005, 105, 1103. doi: 10.1021/cr0300789

    5. [5]

      (5) Nenchev, G.; Diaconescu, B.; Hagelberg, F.; Pohl, K. Phys. Rev. B 2009, 80, 081401. doi: 10.1103/PhysRevB.80.081401

    6. [6]

      (6) Chen, W. K.; Cao, M. J.; Liu, S. H.; Xu, Y.; Li, Y.; Li, J. Q. Acta Phys. -Chim. Sin. 2005, 21, 903. [陈文凯, 曹梅娟, 刘书红,许莹,李奕,李俊篯. 物理化学学报, 2005, 21, 903.] doi: 10.3866/PKU.WHXB20050816

    7. [7]

      (7) Cao, M. J.; Chen, W. K.; Liu, S. H.; Lu, C. H.; Xu, Y.; Li, J. Q.Chin. J. Catal. 2006, 27, 223. [曹梅娟, 陈文凯,刘书红, 陆春海,许莹,李俊篯.催化学报, 2006, 27, 223.]

    8. [8]

      (8) Cao, M. J.; Chen, W. K.; Liu, S. H.; Xu, Y.; Li, J. Q. Acta Phys. -Chim. Sin. 2006, 22, 11. [曹梅娟, 陈文凯,刘书红,许莹,李俊篯. 物理化学学报, 2006, 22, 11.] doi: 10.3866/PKU.WHXB20060103

    9. [9]

      (9) Li, B.; Zeng, C. G.; Li, Q. X.; Yang, J. L.; Hou, J. G.; Zhu, Q. S.J. Chin. Electr. Microsc. Soc. 2003, 22, 189. [李斌,曾长淦,李群祥, 杨金龙, 侯建国, 朱清时. 电子显微学报, 2003, 22,189.]

    10. [10]

      (10) Yourdshahyan, Y.; Zhang, H. K.; Rappe, A. M. Phys. Rev. B2001, 63, 081405. doi: 10.1103/PhysRevB.63.081405

    11. [11]

      (11) Vericat, C.; Vela, M. E.; Salvarezza, R. C. Phys. Chem. Chem. Phys. 2005, 7, 3258. doi: 10.1039/b505903h

    12. [12]

      (12) Maksymovych, P.; Yates, J. T. J. Am. Chem. Soc. 2006, 128,10642. doi: 10.1021/ja062006f

    13. [13]

      (13) Maksymovych, P.; Sorescu, D. C.; Yates, J. T. J. Phys. Chem. B2006, 110, 21161. doi: 10.1021/jp0625964

    14. [14]

      (14) Maksymovych, P.; Vocnyy, O.; Dougherty, D. B.; Sorescu, D. C.;Yates, J. T. Pro. Surf. Sci. 2010, 85, 206. doi: 10.1016/j.progsurf.2010.05.001

    15. [15]

      (15) Vericat, C.; Vela, M. E.; Benitez, G.; Carro, P.; Salvarezza, R. C.Chem. Soc. Rev. 2010, 39, 1805. doi: 10.1039/b907301a

    16. [16]

      (16) Min, J. X.; Fan, X. L.; Cheng, Q. Z.; Chi, Q. Acta Chim. Sin.2011, 69, 789. [闵家祥, 范晓丽,程千忠,池琼.化学学报,2011, 69, 789.]

    17. [17]

      (17) Carro, P.; Torres, D.; Diaz, R.; Salvarezza, R. C.; Lllas, F.J. Phys. Chem. Lett. 2012, 3, 2159. doi: 10.1021/jz300712g

    18. [18]

      (18) Li, B.; Zeng, C. G.; Li, Q. X.; Wang, B.; Yuan, L. F.; Wang, H.Q.; Yang, J. L.; Hou, J. G.; Zhu, Q. S. J. Phys. Chem. B 2003,107, 972. doi: 10.1021/jp0261861

    19. [19]

      (19) Wang, J. G.; Selloni, A. J. Phys. Chem. C 2007, 111, 12149. doi: 10.1021/jp0745891

    20. [20]

      (20) Nakayz, M.; Shikishima, M.; Shibuta, M.; Hirata, N.; Eguchi,T.; Nakajima, A. ACS Nano 2012, 6, 8728. doi: 10.1021/nn302405r

    21. [21]

      (21) Hohenberg, P.; Kohn, W. Phys. Rev. 1964, 136, B864.

    22. [22]

      (22) Kohn, W.; Sham, L. J. Phys. Rev. 1965, 140, A1133.

    23. [23]

      (23) Kresse, G.; Hafner, J. Phys. Rev. B 1993, 47, 558. doi: 10.1103/PhysRevB.47.558

    24. [24]

      (24) Kresse, G.; Hafner, J. Phys. Rev. B 1994, 49, 14251. doi: 10.1103/PhysRevB.49.14251

    25. [25]

      (25) Kresse, G.; Furthmüller, J. Phys. Rev. B 1996, 54, 11169.doi: 10.1103/PhysRevB.54.11169

    26. [26]

      (26) Kresse, G.; Furthmüller, J. Comput. Mater. Sci. 1996, 6, 15.doi: 10.1016/0927-0256(96)00008-0

    27. [27]

      (27) Kresse, G.; Joubert, D. Phys. Rev. B 1999, 59, 1758. doi: 10.1103/PhysRevB.59.1758

    28. [28]

      (28) Blochl, P. E. Phys. Rev. B 1994, 50, 17953. doi: 10.1103/PhysRevB.50.17953

    29. [29]

      (29) Perdew, J. P.; Burke, K.; Ernzerhof, M. Phys. Rev. Lett. 1996,77, 3865. doi: 10.1103/PhysRevLett.77.3865

    30. [30]

      (30) Nara, J.; Higai, S.; Morikawa, Y.; Ohno, T. J. Chem. Phys. 2004,120, 6705. doi: 10.1063/1.1651064

    31. [31]

      (31) Fan, X. L.; Chi, Q.; Liu, C.; Lau, W. J. Phys. Chem. C 2012,116, 1001.

    32. [32]

      (32) Lustemberg, P. G.; Martiarena, M. L.; Martínez, A. E.;Busnen , H. F. Langmuir 2008, 24, 3274. doi: 10.1021/la703306t

    33. [33]

      (33) Fan, X. L.; Zhang, C.; Liu, Y.; Lau, W. M. J. Phys. Chem. C2012, 116, 19909. doi: 10.1021/jp306812v

    34. [34]

      (34) Maksymovych, P.; Yates, J. T. J. Am. Chem. Soc. 2008, 130,7518. doi: 10.1021/ja800577w

    35. [35]

      (35) Rajaraman, G.; Caneschi, A.; Gatteschi, D.; Totti, F. Phys. Chem. Chem. Phys. 2011, 13, 3886. doi: 10.1039/c0cp02042g

    36. [36]

      (36) Tielens, F.; Santos, E. J. Phys. Chem. C 2010, 114, 9444.

    37. [37]

      (37) ttschalck, J.; Hammer, B. J. Chem. Phys. 2002, 116, 784.

    38. [38]

      (38) Henkelman, G.; Arnaldsson, A.; Jonsson, H. Comput. Mater. Sci. 2006, 36, 354. doi: 10.1016/j.commatsci.2005.04.010


    1. [1]

      (1) Ulman, A. Chem. Rev. 1996, 96, 1533. doi: 10.1021/cr9502357

    2. [2]

      (2) Schreiber, F. Prog. Surf. Sci. 2000, 65, 151. doi: 10.1016/S0079-6816(00)00024-1

    3. [3]

      (3) Schreiber, F. J. Phys.: Condes. Matter 2004, 16, R881.

    4. [4]

      (4) Love, J. C.; Estroff, L. A.; Kriebel, J. K.; Nuzzo, R. G.;Whitesides, G. M. Chem. Rev. 2005, 105, 1103. doi: 10.1021/cr0300789

    5. [5]

      (5) Nenchev, G.; Diaconescu, B.; Hagelberg, F.; Pohl, K. Phys. Rev. B 2009, 80, 081401. doi: 10.1103/PhysRevB.80.081401

    6. [6]

      (6) Chen, W. K.; Cao, M. J.; Liu, S. H.; Xu, Y.; Li, Y.; Li, J. Q. Acta Phys. -Chim. Sin. 2005, 21, 903. [陈文凯, 曹梅娟, 刘书红,许莹,李奕,李俊篯. 物理化学学报, 2005, 21, 903.] doi: 10.3866/PKU.WHXB20050816

    7. [7]

      (7) Cao, M. J.; Chen, W. K.; Liu, S. H.; Lu, C. H.; Xu, Y.; Li, J. Q.Chin. J. Catal. 2006, 27, 223. [曹梅娟, 陈文凯,刘书红, 陆春海,许莹,李俊篯.催化学报, 2006, 27, 223.]

    8. [8]

      (8) Cao, M. J.; Chen, W. K.; Liu, S. H.; Xu, Y.; Li, J. Q. Acta Phys. -Chim. Sin. 2006, 22, 11. [曹梅娟, 陈文凯,刘书红,许莹,李俊篯. 物理化学学报, 2006, 22, 11.] doi: 10.3866/PKU.WHXB20060103

    9. [9]

      (9) Li, B.; Zeng, C. G.; Li, Q. X.; Yang, J. L.; Hou, J. G.; Zhu, Q. S.J. Chin. Electr. Microsc. Soc. 2003, 22, 189. [李斌,曾长淦,李群祥, 杨金龙, 侯建国, 朱清时. 电子显微学报, 2003, 22,189.]

    10. [10]

      (10) Yourdshahyan, Y.; Zhang, H. K.; Rappe, A. M. Phys. Rev. B2001, 63, 081405. doi: 10.1103/PhysRevB.63.081405

    11. [11]

      (11) Vericat, C.; Vela, M. E.; Salvarezza, R. C. Phys. Chem. Chem. Phys. 2005, 7, 3258. doi: 10.1039/b505903h

    12. [12]

      (12) Maksymovych, P.; Yates, J. T. J. Am. Chem. Soc. 2006, 128,10642. doi: 10.1021/ja062006f

    13. [13]

      (13) Maksymovych, P.; Sorescu, D. C.; Yates, J. T. J. Phys. Chem. B2006, 110, 21161. doi: 10.1021/jp0625964

    14. [14]

      (14) Maksymovych, P.; Vocnyy, O.; Dougherty, D. B.; Sorescu, D. C.;Yates, J. T. Pro. Surf. Sci. 2010, 85, 206. doi: 10.1016/j.progsurf.2010.05.001

    15. [15]

      (15) Vericat, C.; Vela, M. E.; Benitez, G.; Carro, P.; Salvarezza, R. C.Chem. Soc. Rev. 2010, 39, 1805. doi: 10.1039/b907301a

    16. [16]

      (16) Min, J. X.; Fan, X. L.; Cheng, Q. Z.; Chi, Q. Acta Chim. Sin.2011, 69, 789. [闵家祥, 范晓丽,程千忠,池琼.化学学报,2011, 69, 789.]

    17. [17]

      (17) Carro, P.; Torres, D.; Diaz, R.; Salvarezza, R. C.; Lllas, F.J. Phys. Chem. Lett. 2012, 3, 2159. doi: 10.1021/jz300712g

    18. [18]

      (18) Li, B.; Zeng, C. G.; Li, Q. X.; Wang, B.; Yuan, L. F.; Wang, H.Q.; Yang, J. L.; Hou, J. G.; Zhu, Q. S. J. Phys. Chem. B 2003,107, 972. doi: 10.1021/jp0261861

    19. [19]

      (19) Wang, J. G.; Selloni, A. J. Phys. Chem. C 2007, 111, 12149. doi: 10.1021/jp0745891

    20. [20]

      (20) Nakayz, M.; Shikishima, M.; Shibuta, M.; Hirata, N.; Eguchi,T.; Nakajima, A. ACS Nano 2012, 6, 8728. doi: 10.1021/nn302405r

    21. [21]

      (21) Hohenberg, P.; Kohn, W. Phys. Rev. 1964, 136, B864.

    22. [22]

      (22) Kohn, W.; Sham, L. J. Phys. Rev. 1965, 140, A1133.

    23. [23]

      (23) Kresse, G.; Hafner, J. Phys. Rev. B 1993, 47, 558. doi: 10.1103/PhysRevB.47.558

    24. [24]

      (24) Kresse, G.; Hafner, J. Phys. Rev. B 1994, 49, 14251. doi: 10.1103/PhysRevB.49.14251

    25. [25]

      (25) Kresse, G.; Furthmüller, J. Phys. Rev. B 1996, 54, 11169.doi: 10.1103/PhysRevB.54.11169

    26. [26]

      (26) Kresse, G.; Furthmüller, J. Comput. Mater. Sci. 1996, 6, 15.doi: 10.1016/0927-0256(96)00008-0

    27. [27]

      (27) Kresse, G.; Joubert, D. Phys. Rev. B 1999, 59, 1758. doi: 10.1103/PhysRevB.59.1758

    28. [28]

      (28) Blochl, P. E. Phys. Rev. B 1994, 50, 17953. doi: 10.1103/PhysRevB.50.17953

    29. [29]

      (29) Perdew, J. P.; Burke, K.; Ernzerhof, M. Phys. Rev. Lett. 1996,77, 3865. doi: 10.1103/PhysRevLett.77.3865

    30. [30]

      (30) Nara, J.; Higai, S.; Morikawa, Y.; Ohno, T. J. Chem. Phys. 2004,120, 6705. doi: 10.1063/1.1651064

    31. [31]

      (31) Fan, X. L.; Chi, Q.; Liu, C.; Lau, W. J. Phys. Chem. C 2012,116, 1001.

    32. [32]

      (32) Lustemberg, P. G.; Martiarena, M. L.; Martínez, A. E.;Busnen , H. F. Langmuir 2008, 24, 3274. doi: 10.1021/la703306t

    33. [33]

      (33) Fan, X. L.; Zhang, C.; Liu, Y.; Lau, W. M. J. Phys. Chem. C2012, 116, 19909. doi: 10.1021/jp306812v

    34. [34]

      (34) Maksymovych, P.; Yates, J. T. J. Am. Chem. Soc. 2008, 130,7518. doi: 10.1021/ja800577w

    35. [35]

      (35) Rajaraman, G.; Caneschi, A.; Gatteschi, D.; Totti, F. Phys. Chem. Chem. Phys. 2011, 13, 3886. doi: 10.1039/c0cp02042g

    36. [36]

      (36) Tielens, F.; Santos, E. J. Phys. Chem. C 2010, 114, 9444.

    37. [37]

      (37) ttschalck, J.; Hammer, B. J. Chem. Phys. 2002, 116, 784.

    38. [38]

      (38) Henkelman, G.; Arnaldsson, A.; Jonsson, H. Comput. Mater. Sci. 2006, 36, 354. doi: 10.1016/j.commatsci.2005.04.010


  • 加载中
    1. [1]

      Hao XURuopeng LIPeixia YANGAnmin LIUJie BAI . Regulation mechanism of halogen axial coordination atoms on the oxygen reduction activity of Fe-N4 site: A density functional theory study. Chinese Journal of Inorganic Chemistry, 2025, 41(4): 695-701. doi: 10.11862/CJIC.20240302

    2. [2]

      Jie ZHAOSen LIUQikang YINXiaoqing LUZhaojie WANG . Theoretical calculation of selective adsorption and separation of CO2 by alkali metal modified naphthalene/naphthalenediyne. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 515-522. doi: 10.11862/CJIC.20230385

    3. [3]

      Meifeng Zhu Jin Cheng Kai Huang Cheng Lian Shouhong Xu Honglai Liu . Classical Density Functional Theory for Understanding Electrochemical Interface. University Chemistry, 2025, 40(3): 148-152. doi: 10.12461/PKU.DXHX202405166

    4. [4]

      Kaifu Zhang Shan Gao Bin Yang . Application of Theoretical Calculation with Fun Practice in Raman Spectroscopy Experimental Teaching. University Chemistry, 2025, 40(3): 62-67. doi: 10.12461/PKU.DXHX202404045

    5. [5]

      Jie ZHAOHuili ZHANGXiaoqing LUZhaojie WANG . Theoretical calculations of CO2 capture and separation by functional groups modified 2D covalent organic framework. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 275-283. doi: 10.11862/CJIC.20240213

    6. [6]

      Maitri BhattacharjeeRekha Boruah SmritiR. N. Dutta PurkayasthaWaldemar ManiukiewiczShubhamoy ChowdhuryDebasish MaitiTamanna Akhtar . Synthesis, structural characterization, bio-activity, and density functional theory calculation on Cu(Ⅱ) complexes with hydrazone-based Schiff base ligands. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1409-1422. doi: 10.11862/CJIC.20240007

    7. [7]

      Xiaochen Zhang Fei Yu Jie Ma . 多角度数理模拟在电容去离子中的前沿应用. Acta Physico-Chimica Sinica, 2024, 40(11): 2311026-. doi: 10.3866/PKU.WHXB202311026

    8. [8]

      Weina Wang Lixia Feng Fengyi Liu Wenliang Wang . Computational Chemistry Experiments in Facilitating the Study of Organic Reaction Mechanism: A Case Study of Electrophilic Addition of HCl to Asymmetric Alkenes. University Chemistry, 2025, 40(3): 206-214. doi: 10.12461/PKU.DXHX202407022

    9. [9]

      Jiali CHENGuoxiang ZHAOYayu YANWanting XIAQiaohong LIJian ZHANG . Machine learning exploring the adsorption of electronic gases on zeolite molecular sieves. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 155-164. doi: 10.11862/CJIC.20240408

    10. [10]

      Jingwen Wang Minghao Wu Xing Zuo Yaofeng Yuan Yahao Wang Xiaoshun Zhou Jianfeng Yan . Advances in the Application of Electrochemical Regulation in Investigating the Electron Transport Properties of Single-Molecule Junctions. University Chemistry, 2025, 40(3): 291-301. doi: 10.12461/PKU.DXHX202406023

    11. [11]

      Jiahong ZHENGJingyun YANG . Preparation and electrochemical properties of hollow dodecahedral CoNi2S4 supported by MnO2 nanowires. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1881-1891. doi: 10.11862/CJIC.20240170

    12. [12]

      Fei Xie Chengcheng Yuan Haiyan Tan Alireza Z. Moshfegh Bicheng Zhu Jiaguo Yud带中心调控过渡金属单原子负载COF吸附O2的理论计算研究. Acta Physico-Chimica Sinica, 2024, 40(11): 2407013-. doi: 10.3866/PKU.WHXB202407013

    13. [13]

      Qin Hu Liuyun Chen Xinling Xie Zuzeng Qin Hongbing Ji Tongming Su . Ni掺杂构建电子桥及激活MoS2惰性基面增强光催化分解水产氢. Acta Physico-Chimica Sinica, 2024, 40(11): 2406024-. doi: 10.3866/PKU.WHXB202406024

    14. [14]

      Xinyu Yin Haiyang Shi Yu Wang Xuefei Wang Ping Wang Huogen Yu . Spontaneously Improved Adsorption of H2O and Its Intermediates on Electron-Deficient Mn(3+δ)+ for Efficient Photocatalytic H2O2 Production. Acta Physico-Chimica Sinica, 2024, 40(10): 2312007-. doi: 10.3866/PKU.WHXB202312007

    15. [15]

      Peng ZHOUXiao CAIQingxiang MAXu LIU . Effects of Cu doping on the structure and optical properties of Au11(dppf)4Cl2 nanocluster. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1254-1260. doi: 10.11862/CJIC.20240047

    16. [16]

      Xuyang Wang Jiapei Zhang Lirui Zhao Xiaowen Xu Guizheng Zou Bin Zhang . Theoretical Study on the Structure and Stability of Copper-Ammonia Coordination Ions. University Chemistry, 2024, 39(3): 384-389. doi: 10.3866/PKU.DXHX202309065

    17. [17]

      Yonghui ZHOURujun HUANGDongchao YAOAiwei ZHANGYuhang SUNZhujun CHENBaisong ZHUYouxuan ZHENG . Synthesis and photoelectric properties of fluorescence materials with electron donor-acceptor structures based on quinoxaline and pyridinopyrazine, carbazole, and diphenylamine derivatives. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 701-712. doi: 10.11862/CJIC.20230373

    18. [18]

      Liang MAHonghua ZHANGWeilu ZHENGAoqi YOUZhiyong OUYANGJunjiang CAO . Construction of highly ordered ZIF-8/Au nanocomposite structure arrays and application of surface-enhanced Raman spectroscopy. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1743-1754. doi: 10.11862/CJIC.20240075

    19. [19]

      Baitong Wei Jinxin Guo Xigong Liu Rongxiu Zhu Lei Liu . Theoretical Study on the Structure, Stability of Hydrocarbon Free Radicals and Selectivity of Alkane Chlorination Reaction. University Chemistry, 2025, 40(3): 402-407. doi: 10.12461/PKU.DXHX202406003

    20. [20]

      Tengjiao Wang Tian Cheng Rongjun Liu Zeyi Wang Yuxuan Qiao An Wang Peng Li . Conductive Hydrogel-based Flexible Electronic System: Innovative Experimental Design in Flexible Electronics. University Chemistry, 2024, 39(4): 286-295. doi: 10.3866/PKU.DXHX202309094

Metrics
  • PDF Downloads(743)
  • Abstract views(1243)
  • HTML views(23)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return