Citation: GAO Zi-Feng, CHEN Hao, QI Sui-Tao, YI Chun-Hai, YANG Bo-Lun. Study of Hydrogen Adsorption on Pt and Pt-Based Bimetallic Surfaces by Density Functional Theory[J]. Acta Physico-Chimica Sinica, ;2013, 29(09): 1900-1906. doi: 10.3866/PKU.WHXB201307021 shu

Study of Hydrogen Adsorption on Pt and Pt-Based Bimetallic Surfaces by Density Functional Theory

  • Received Date: 26 April 2013
    Available Online: 2 July 2013

    Fund Project: 国家自然科学基金(21006076) (21006076)高等学校博士学科点专项科研基金(20110201130002) (20110201130002)中央高校基本科研业务费专项基金(xjj2011062)资助项目 (xjj2011062)

  • The surface energies and surface relaxation of Pt(100), (110), and (111) surfaces, as well as the hydrogen adsorption behavior on three Pt surfaces and M-Pt(111) (M=Al, Fe, Co, Ni, Cu, Pd) bimetallic surfaces with a coverage of 0.25 ML were calculated by density functional theory (DFT). The most favorable adsorption sites, adsorption energies, and relaxation during adsorption were obtained. The hydrogen local density of states before and after the adsorption, the positions of the d-band center of different bimetallic surfaces with respect to the Fermi level were analyzed and further related to hydrogen adsorption energies. The calculations showed that the easiest adsorption sites of hydrogen on Pt(100), Pt (110), and Pt(111) are, in order, the bridge site, the short bridge site, and the fcc hollow site. The Pt(111) surface has the lowest surface energy among the three Pt surfaces and the Pt(111) surface is the most stable structure. However, the fcc hollow site is the most stable adsorption site for different M-Pt(111) bimetallic surfaces. The Ni-Pt bimetallic surface showed the lowest hydrogen adsorption energy among the M-Pt(111) bimetallic surfaces. The Co-Pt bimetallic surface showed the next lowest hydrogen adsorption energy, indicating that hydrogen adsorption on Ni-Pt and Co-Pt bimetallic surfaces is more stable. In addition, the first layer and the second layer have an expanding tendency with some degree after hydrogen adsorption on Ni-Pt, Co-Pt, and Fe-Pt bimetallic surfaces. The addition of a 3d metal surface layer on Pt(111) was found to move the d-band center closer to the Fermi level when compared with the bulk Pt metal, and increases the hydrogen adsorption ability by means of the density of state analysis of the bimetallic surfaces model. This reveals that 3d-Pt bimetallic surfaces are likely to have better dehydrogenation activity than Pt.

  • 加载中
    1. [1]

      (1) Murray, L. J.; Dinc?, M.; Long, J. R. Chem. Soc. Rev. 2009, 38 (5), 1294. doi: 10.1039/b802256a

    2. [2]

      (2) Shukla, A. A.; savi, P. V.; Pande, J. V.; Kumar, V. P.; Chary,K. V.; Biniwale, R. B. Int. J. Hydrog. Energy 2010, 35 (9),4020. doi: 10.1016/j.ijhydene.2010.02.014

    3. [3]

      (3) Bhasin, M. M.; McCain, J. H.; Vora, B. V.; Imai, T.; Pujado, P.R. Appl. Catal. A 2001, 221 (1), 397.

    4. [4]

      (4) Qi, S. T.; Yu, W. T.; William, W. L.; Yang, B. L.; Chen, J. G. Chin. J. Catal. 2010, 31 (8), 955. [齐随涛, 俞伟婷, WilliamW. Lonergan, 杨伯伦,陈经广.催化学报, 2010, 31 (8), 955.]doi: 10.1016/S1872-2067(09)60092-9

    5. [5]

      (5) Iwasa, N.; Takezawa, N. Top. Catal. 2003, 22 (3-4), 215.

    6. [6]

      (6) Zhu, G. L.; Yang, B. L. Prog. Chem. 2009, 21 (12), 2760. [朱刚利,杨伯伦. 化学进展, 2009, 21 (12), 2760. ]

    7. [7]

      (7) Desai, S. K.; Neurock, M.; Kourtakis, K. J. Phys. Chem. B2002, 106 (10), 2559. doi: 10.1021/jp0132984

    8. [8]

      (8) Flick, D. W.; Huff, M. C. Appl. Catal. A 1999, 187 (1), 13. doi: 10.1016/S0926-860X(99)00179-9

    9. [9]

      (9) Qi, S. T.; Huang, J.; Chen, H.; Gao, Z. F.; Yi, C. H.; Yang, B. L.Acta Chim. Sin. 2012, 70 (24), 2467. [齐随涛,黄俊,陈昊,高子丰,伊春海, 杨伯伦.化学学报, 2012, 70 (24),2467.] doi: 10.6023/A12080603

    10. [10]

      (10) Nørskov, J. K.; Rossmeisl, J.; Logadottir, A.; Lindqvist, L.;Kitchin, J. R.; Bligaard, T.; Jonsson, H. J. Phys. Chem. B 2004,108 (46), 17886. doi: 10.1021/jp047349j

    11. [11]

      (11) Chen, J. G.; Menning, C. A.; Zellner, M. B. Surf. Sci. Rep. 2008,63 (5), 201. doi: 10.1016/j.surfrep.2008.02.001

    12. [12]

      (12) Chen, J. G.; Qi, S. T.; Humbert, M. P.; Menning, C. A.; Zhu, Y.X. Acta Phys. -Chim. Sin. 2010, 26 (4), 869. [陈经广,齐随涛,Humbert, M. P., Menning, C. A.,朱月香. 物理化学学报, 2010,26 (4), 869.] doi: 10.3866/PKU.WHXB20100441

    13. [13]

      (13) Løvvik, O. M.; Olsen, R. A. Phys. Rev. B 1998, 58 (16), 10890.doi: 10.1103/PhysRevB.58.10890

    14. [14]

      (14) Paul, J. F.; Sautet, P. Phys. Rev. B 1996, 53 (12), 8015. doi: 10.1103/PhysRevB.53.8015

    15. [15]

      (15) Kresse, G.; Hafner, J. Surf. Sci. 2000, 459 (3), 287. doi: 10.1016/S0039-6028(00)00457-X

    16. [16]

      (16) Huang, Y. L.; Liu, Z. P. Acta Phys. -Chim. Sin. 2008, 24 (9),1662. [黄永丽, 刘志平.物理化学学报, 2008, 24 (9),1662.] doi: 10.3866/PKU.WHXB20080923

    17. [17]

      (17) Watson, G. W.; Wells, R. P.; Willock, D. J.; Hutchings, G. J.J. Phys. Chem. B 2001, 105 (21), 4889. doi: 10.1021/jp002864c

    18. [18]

      (18) Lima, F. H.; Zhang, J.; Shao, M. H.; Sasaki, K.; Vukmirovic, M.B.; Ticianelli, E. A.; Adzic, R. R. J. Phys. Chem. C 2007, 111 (1), 404. doi: 10.1021/jp065181r

    19. [19]

      (19) Ren, Y. P.; Lu, Y. X.; Zi, Q. Acta Phys. -Chim. Sin. 2007, 23 (11), 1728. [任云鹏,鲁玉祥,姿琦.物理化学学报, 2007,23 (11), 1728.] doi: 10.3866/PKU.WHXB20071114

    20. [20]

      (20) Lynch, M.; Hu, P. Surf. Sci. 2000, 458 (1), 1.

    21. [21]

      (21) Zhang, J. M.; Ma, F.; Xu, K. W. Appl. Surf. Sci. 2004, 229 (1),34.

    22. [22]

      (22) Vitos, L.; Ruban, A.; Skriver, H. L.; Kollar, J. Surf. Sci. 1998,411 (1), 186.

    23. [23]

      (23) Ma, C. A.; Liu, T.; Chen, L. T. Acta Phys. -Chim. Sin. 2010, 26 (1), 155. [马淳安, 刘婷, 陈丽涛.物理化学学报, 2010, 26 (1), 155.] doi: 10.3866/PKU.WHXB20091224

    24. [24]

      (24) Vegge, T.; Hedegaard-Jensen, L. S.; Bonde, J.; Munter, T. R.;N?rskov, J. K. J. Alloy. Compd. 2005, 386 (1), 1.

    25. [25]

      (25) Bligaard, T.; Nørskov, J. K. Electrochim. Acta 2007, 52 (18),5512. doi: 10.1016/j.electacta.2007.02.041


  • 加载中
    1. [1]

      Hao XURuopeng LIPeixia YANGAnmin LIUJie BAI . Regulation mechanism of halogen axial coordination atoms on the oxygen reduction activity of Fe-N4 site: A density functional theory study. Chinese Journal of Inorganic Chemistry, 2025, 41(4): 695-701. doi: 10.11862/CJIC.20240302

    2. [2]

      Jie ZHAOSen LIUQikang YINXiaoqing LUZhaojie WANG . Theoretical calculation of selective adsorption and separation of CO2 by alkali metal modified naphthalene/naphthalenediyne. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 515-522. doi: 10.11862/CJIC.20230385

    3. [3]

      Wei SunYongjing WangKun XiangSaishuai BaiHaitao WangJing ZouArramelJizhou Jiang . CoP Decorated on Ti3C2Tx MXene Nanocomposites as Robust Electrocatalyst for Hydrogen Evolution Reaction. Acta Physico-Chimica Sinica, 2024, 40(8): 2308015-0. doi: 10.3866/PKU.WHXB202308015

    4. [4]

      Yupeng TANGHaiying YANGFan JINNan LI . Hydrogen storage properties of C6S6Li6: A density functional theory study. Chinese Journal of Inorganic Chemistry, 2025, 41(9): 1827-1839. doi: 10.11862/CJIC.20240460

    5. [5]

      Kaifu Zhang Shan Gao Bin Yang . Application of Theoretical Calculation with Fun Practice in Raman Spectroscopy Experimental Teaching. University Chemistry, 2025, 40(3): 62-67. doi: 10.12461/PKU.DXHX202404045

    6. [6]

      Jie ZHAOHuili ZHANGXiaoqing LUZhaojie WANG . Theoretical calculations of CO2 capture and separation by functional groups modified 2D covalent organic framework. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 275-283. doi: 10.11862/CJIC.20240213

    7. [7]

      Meifeng Zhu Jin Cheng Kai Huang Cheng Lian Shouhong Xu Honglai Liu . Classical Density Functional Theory for Understanding Electrochemical Interface. University Chemistry, 2025, 40(3): 148-152. doi: 10.12461/PKU.DXHX202405166

    8. [8]

      Weina Wang Lixia Feng Fengyi Liu Wenliang Wang . Computational Chemistry Experiments in Facilitating the Study of Organic Reaction Mechanism: A Case Study of Electrophilic Addition of HCl to Asymmetric Alkenes. University Chemistry, 2025, 40(3): 206-214. doi: 10.12461/PKU.DXHX202407022

    9. [9]

      Tongqi Ye Yanqing Wang Qi Wang Huaiping Cong Xianghua Kong Yuewen Ye . Reform of Classical Thermodynamics Curriculum from the Perspective of Computational Chemistry. University Chemistry, 2025, 40(7): 387-392. doi: 10.12461/PKU.DXHX202409128

    10. [10]

      Xiaochen ZhangFei YuJie Ma . Cutting-Edge Applications of Multi-Angle Numerical Simulations for Capacitive Deionization. Acta Physico-Chimica Sinica, 2024, 40(11): 2311026-0. doi: 10.3866/PKU.WHXB202311026

    11. [11]

      Chunmei GUOWeihan YINJingyi SHIJianhang ZHAOYing CHENQuli FAN . Facile construction and peroxidase-like activity of single-atom platinum nanozyme. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1633-1639. doi: 10.11862/CJIC.20240162

    12. [12]

      Ruizhi DuanXiaomei WangPanwang ZhouYang LiuCan Li . The role of hydroxyl species in the alkaline hydrogen evolution reaction over transition metal surfaces. Acta Physico-Chimica Sinica, 2025, 41(9): 100111-0. doi: 10.1016/j.actphy.2025.100111

    13. [13]

      Qiqi LiSu ZhangYuting JiangLinna ZhuNannan GuoJing ZhangYutong LiTong WeiZhuangjun Fan . Preparation of High Density Activated Carbon by Mechanical Compression of Precursors for Compact Capacitive Energy Storage. Acta Physico-Chimica Sinica, 2025, 41(3): 2406009-0. doi: 10.3866/PKU.WHXB202406009

    14. [14]

      Shiyang HeDandan ChuZhixin PangYuhang DuJiayi WangYuhong ChenYumeng SuJianhua QinXiangrong PanZhan ZhouJingguo LiLufang MaChaoliang Tan . Pt Single-Atom-Functionalized 2D Al-TCPP MOF Nanosheets for Enhanced Photodynamic Antimicrobial Therapy. Acta Physico-Chimica Sinica, 2025, 41(5): 100046-0. doi: 10.1016/j.actphy.2025.100046

    15. [15]

      Xiaoxuan Yu Wukun Liu . Practice of Ideological and Political Education in Medicinal Chemistry for Pharmacy Administration Major: A Case Study on the Discovery of Cisplatin’s Anticancer Function. University Chemistry, 2025, 40(4): 408-414. doi: 10.12461/PKU.DXHX202405200

    16. [16]

      Lu XUChengyu ZHANGWenjuan JIHaiying YANGYunlong FU . Zinc metal-organic framework with high-density free carboxyl oxygen functionalized pore walls for targeted electrochemical sensing of paracetamol. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 907-918. doi: 10.11862/CJIC.20230431

    17. [17]

      Maitri BhattacharjeeRekha Boruah SmritiR. N. Dutta PurkayasthaWaldemar ManiukiewiczShubhamoy ChowdhuryDebasish MaitiTamanna Akhtar . Synthesis, structural characterization, bio-activity, and density functional theory calculation on Cu(Ⅱ) complexes with hydrazone-based Schiff base ligands. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1409-1422. doi: 10.11862/CJIC.20240007

    18. [18]

      Zhengkun QINZicong PANHui TIANWanyi ZHANGMingxing SONG . A series of iridium(Ⅲ) complexes with fluorophenyl isoquinoline ligand and low-efficiency roll-off properties: A density functional theory study. Chinese Journal of Inorganic Chemistry, 2025, 41(6): 1235-1244. doi: 10.11862/CJIC.20240429

    19. [19]

      Fei XieChengcheng YuanHaiyan TanAlireza Z. MoshfeghBicheng ZhuJiaguo Yud-Band Center Regulated O2 Adsorption on Transition Metal Single Atoms Loaded COF: A DFT Study. Acta Physico-Chimica Sinica, 2024, 40(11): 2407013-0. doi: 10.3866/PKU.WHXB202407013

    20. [20]

      Xuejie WangGuoqing CuiCongkai WangYang YangGuiyuan JiangChunming Xu . Research Progress on Carbon-based Catalysts for Catalytic Dehydrogenation of Liquid Organic Hydrogen Carriers. Acta Physico-Chimica Sinica, 2025, 41(5): 100044-0. doi: 10.1016/j.actphy.2024.100044

Metrics
  • PDF Downloads(1303)
  • Abstract views(1756)
  • HTML views(115)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return