Citation: WU Xiao-Min, YUAN Xiao-Hui, XUE Shu-Lei, ZHA Ling-Sheng, WANG Guang-Li, ZHANG Hai-Jun. Research Progress of the Trp-Cage Formation and Its Folding Mechanism[J]. Acta Physico-Chimica Sinica, ;2013, 29(09): 1842-1850. doi: 10.3866/PKU.WHXB201307011 shu

Research Progress of the Trp-Cage Formation and Its Folding Mechanism

  • Received Date: 26 February 2013
    Available Online: 1 July 2013

    Fund Project: 国家自然科学基金(81272377, 31100083) (81272377, 31100083)安徽省自然科学基金(1208085QC58) (1208085QC58)安徽省高校省级自然科学研究项目(KJ2012B163,2012SQRL225) (KJ2012B163,2012SQRL225)淮北师范大学引进人才基金(600698)资助 (600698)

  • Protein folding is considered one of the most important topics in structural biology. An in-depth understanding of the folding-function relationship is one of the most important subjects for biologists, and is of interest to scientific researchers in other disciplines. The folding of proteins is often completed within the order of milliseconds to seconds, whereas the underlying atomistic details corresponding to structural alterations and intermolecular interactions often occur on the nanosecond or even smaller timescales. Accordingly, the unambiguous description of complicated folding behaviors remains inaccessible to routine experimental and theoretically-calculated resolutions. In this paper, we reviewthe problems that exist in recent experimental and theoretical studies examining the protein folding mechanism. The Trp-cage is a fast-folding mini-protein containing merely 20 amino acid residues, but adopts a well-packed hydrophobic core and tertiary contacts. Herein, we use the Trp-cage as an example and summarize the experimental and theoretical research carried out on the Trp-cage formation and its folding mechanism. The presentation primarily focuses on three aspects: (1) the folding temperature; (2) the folding initiation and proposed folding mechanisms; and (3) the role of key residues and its driving force for the folding of the Trp-cage mini-protein. Finally, we provide some suggestions on how to effectively simplify the complicated interaction networks of the Trp-cage mini-protein and decrease the complexity of the folding mechanism. This helps us to clarify the respective and cooperative contributions of residues involved in the formation of the Trp-cage and its folding dynamics, as well as provide useful insights for folding studies and more efficient rational peptide design.

  • 加载中
    1. [1]

      (1) Yan, L. F.; Sun, Z. R. Molecular Structure of Protein; TsinghuaUniversity Press: Beijing, 1999. [阎隆飞,孙之荣.蛋白质分子结构.北京:清华大学出版社, 1999.]

    2. [2]

      (2) Vendruscolo, M. Curr. Opin. Struct. Biol. 2007, 17, 15. doi: 10.1016/j.sbi.2007.01.002

    3. [3]

      (3) Fink, A. L. Curr. Opin. Struct. Biol. 2005, 15, 35. doi: 10.1016/j.sbi.2005.01.002

    4. [4]

      (4) Karplus, M.; McCammon, J. A. Nat. Struct. Biol. 2002, 9, 646.doi: 10.1038/nsb0902-646

    5. [5]

      (5) Parak, F. G. Rep. Prog. Phys. 2003, 66, 103. doi: 10.1088/0034-4885/66/2/201

    6. [6]

      (6) Thomas, P. J.; Qu, B. H.; Pedersen, P. L. Trends Biochem. Sci.1995, 20, 456. doi: 10.1016/S0968-0004(00)89100-8

    7. [7]

      (7) Gellman, S. H.; Woolfson, D. N. Nat. Struct. Biol. 2002, 9, 408.doi: 10.1038/nsb0602-408

    8. [8]

      (8) Chellgren, B. W.; Creamer, T. P. Biochemistry 2004, 43, 5864.doi: 10.1021/bi049922v

    9. [9]

      (9) Woody, R. Adv. Biophys. Chem. 1992, 2, 37.

    10. [10]

      (10) Zhang, Z. Q. Acta Phys. -Chim. Sin. 2012, 28, 2381. [张竹青.物理化学学报, 2012, 28, 2381.] doi: 10.3866/PKU.WHXB201209144

    11. [11]

      (11) Chen, K. X.; Jiang, H. L.; Ji, R. Y. Computer Aided Drug Design——Principle, Methods and Application; ShanghaiScientific Technology Press: Shanghai, 2000. [陈凯先, 蒋华良, 嵇汝运.计算机辅助药物设计——原理、方法及应用. 上海: 上海科学技术出版社, 2000.]

    12. [12]

      (12) Thirumalai, D.; Liu, Z. X.; O'Brien, E. P.; Reddy, G. Curr. Opin. Struct. Biol. 2013, 23, 22. doi: 10.1016/j.sbi.2012.11.010

    13. [13]

      (13) Cai, W. S.; Chipot, C. Acta Chim. Sin. 2013, 71, 159. [蔡文生,Chipot, C.化学学报, 2013, 71, 159.] doi: 10.6023/A12110930

    14. [14]

      (14) Fuentes, G.; Nederveen, A. J.; Kaptein, R.; Boelens, R.; Bonvin,A. M. J. Biomol. NMR 2005, 33, 175. doi: 10.1007/s10858-005-3207-9

    15. [15]

      (15) Wong, K. B.; Clarke, J.; Bond, C. J.; Neira, J. L.; Freund, S. M.;Fersht, A. R.; Daggett, V. J. Mol. Biol. 2000, 296, 1257. doi: 10.1006/jmbi.2000.3523

    16. [16]

      (16) Engen, J. R. Anal. Chem. 2009, 81, 7870. doi: 10.1021/ac901154s

    17. [17]

      (17) Iacob, R. E; Engen, J. R. J. Am. Soc. Mass Spectrom. 2012, 23,1003. doi: 10.1007/s13361-012-0377-z

    18. [18]

      (18) Dill, K. A.; Ozkan, B. S.; Shell, M.; Weikl, T. R. Ann. Rev. Biophys. 2008, 37, 289. doi: 10.1146/annurev.biophys.37.092707.153558

    19. [19]

      (19) Onuchic, J. N.; Wolyness, P. G. Curr. Opin. Struct. Biol. 2004,14, 70. doi: 10.1016/j.sbi.2004.01.009

    20. [20]

      (20) Rizzuti, B.; Daggett, V. Arch. Biochem. Biophys. 2013, 531,128. doi: 10.1016/j.abb.2012.12.015

    21. [21]

      (21) Lindorff-Larsen, K.; Piana, S.; Dror, R. O.; Shaw, D. E. Science2011, 334, 517. doi: 10.1126/science.1208351

    22. [22]

      (22) Shaw, D. E.; Maragakis, P.; Lindorff-Larsen, K.; Piana, S.; Dror,R. O.; Eastwood, M. P.; Bank, J. A.; Jumper, J. M.; Salmon, J.K.; Shan, Y.; Wriggers, W. Science 2010, 330, 341. doi: 10.1126/science.1187409

    23. [23]

      (23) Chan, H. S.; Zhang, Z.; Wallin, S.; Liu, Z. Annu. Rev. Phys. Chem. 2011, 62, 301. doi: 10.1146/annurev-physchem-032210-103405

    24. [24]

      (24) odfellow, J. M.; Moss, D. S. Computer Modeling of Biomolecular Process; Bllis Horwood: NewYork, 1992.

    25. [25]

      (25) Warshel, A. Computer Modeling of Chemical Reactions in Enzymes and Solutions; Jonh Wilev&Sons: NewYork, 1991.

    26. [26]

      (26) Leopold, P.; Montal, M.; Onuchic, J. Proc. Natl. Acad. Sci. U. S. A. 1992, 89, 8721. doi: 10.1073/pnas.89.18.8721

    27. [27]

      (27) Bryngelson, J. D.; Onuchic, J. N.; Socci, N. D.; Wolynes, P. G.Proteins 1995, 21, 167.

    28. [28]

      (28) Mirny, L. A.; Shakhnovich, E. I. Annu. Rev. Biophys. Biomol. Struct. 2001, 30, 361. doi: 10.1146/annurev.biophys.30.1.361

    29. [29]

      (29) Dill, K. A.; Chan, H. S. Nat. Struct. Biol. 1997, 4, 10. doi: 10.1038/nsb0197-10

    30. [30]

      (30) Anfinsen, C. B. Science 1973, 181, 223. doi: 10.1126/science.181.4096.223

    31. [31]

      (31) Thukral, L.; Smith, J. C.; Daidone, I. J. Am. Chem. Soc. 2009,131, 18147. doi: 10.1021/ja9064365

    32. [32]

      (32) Ma, B.; Nussinov, R. J. Mol. Biol. 2000, 296, 1091. doi: 10.1006/jmbi.2000.3518

    33. [33]

      (33) Wu, X. M.; Yang, G.; Zu, Y. G.; Zhou, L. J. Comput. Biol. Chem. 2012, 38, 1. doi: 10.1016/j.compbiolchem.2012.02.003

    34. [34]

      (34) Liu, F. F.; Dong, X. Y.; Sun, Y. J. Mol. Graph. Model. 2008, 27,421. doi: 10.1016/j.jmgm.2008.07.002

    35. [35]

      (35) Li, W.; Zhang, J.; Su, Y.; Wang, J.; Qin, M.; Wang, W. J. Phys. Chem. B 2007, 111, 13814. doi: 10.1021/jp076213t

    36. [36]

      (36) Lazo, N. D.; Grant, M. A.; Condron, M. C.; Rigby, A. C.;Teplow, D. B. Protein Sci. 2005, 14, 1581.

    37. [37]

      (37) Guarnera, E.; Pellarin, R.; Caflisch, A. Biophys. J. 2009, 97,1737. doi: 10.1016/j.bpj.2009.06.047

    38. [38]

      (38) Cecchini, M.; Curcio, R.; Pappalardo, M.; Melki, R.; Caflisch,A. J. Mol. Biol. 2006, 357, 1306. doi: 10.1016/j.jmb.2006.01.009

    39. [39]

      (39) Convertino, M.; Pellarin, R.; Catto, M.; Carotti, A.; Caflisch, A.Protein Sci. 2009, 18, 792.

    40. [40]

      (40) Scherzer-Attali, R.; Pellarin, R.; Convertino, M.; Frydman-Marom, A.; E z-Matia, N.; Peled, S.; Levy-Sakin, M.; Shalev,D. E.; Caflisch, A.; Gazit, E.; Segal, D. PloS One 2010, 5,e11101.

    41. [41]

      (41) Terwilliger, T. C.; Eisenberg, D. J. Biol. Chem. 1982, 257, 6016.

    42. [42]

      (42) Tanizaki, S.; Clifford, J.; Connelly, B. D.; Feig, M. Biophys. J.2008, 94, 747. doi: 10.1529/biophysj.107.116236

    43. [43]

      (43) Predeus, A. V.; Gul, S.; pal, S. M.; Feig, M. J. Phys. Chem. B2012, 116, 8610. doi: 10.1021/jp300129u

    44. [44]

      (44) Shao, Q.; Zhu, W. L.; Gao, Y. Q. J. Phys. Chem. B 2012, 116,13848. doi: 10.1021/jp307684h

    45. [45]

      (45) Halabis, A.; Zmudzinska, W.; Liwo, A.; O?dziej, S. J. Phys. Chem. B 2012, 116, 6898. doi: 10.1021/jp212630y

    46. [46]

      (46) Adams, C. M.; Kjeldsen, F.; Zubarev, R. A.; Budnik, B. A.;Haselmann, K. F. J. Am. Soc. Mass Spectrom. 2004, 15,1087. doi: 10.1016/j.jasms.2004.04.026

    47. [47]

      (47) Miklos, A. C.; Sarkar, M.; Wang, Y.; Pielak, G. J. J. Am. Chem. Soc. 2011, 133, 7116. doi: 10.1021/ja200067p

    48. [48]

      (48) Feig, M.; Sugita, Y. J. Phys. Chem. B 2012, 116, 599. doi: 10.1021/jp209302e

    49. [49]

      (49) Klein-Seetharaman, J.; Oikawa, M.; Grimshaw, S. B.;Wirmer,J.; Duchardt, E.; Ueda, T.; Imoto, T.; Smith, L. J.; Dobson, C.M.; Schwalbe, H. Science 2002, 295, 1719. doi: 10.1126/science.1067680

    50. [50]

      (50) Radford, S. E.; Dobson, C. M.; Evans, P. A. Nature 1992, 358,302. doi: 10.1038/358302a0

    51. [51]

      (51) Xu, J.; Baase, W. A.; Baldwin, E.; Matthews, B. W. Protein Sci.1998, 7, 158.

    52. [52]

      (52) Li, W.; Zhang, J.; Wang, J.; Wang, W. J. Am. Chem. Soc. 2008,130, 892. doi: 10.1021/ja075302g

    53. [53]

      (53) Palmer, A. G., III; Rance, M.; Wright, P. E. J. Am. Chem. Soc.1991, 113, 4371. doi: 10.1021/ja00012a001

    54. [54]

      (54) Gronenborn, A. M.; Filpula, D. R.; Essig, N. Z.; Achari, A.;Whitlow, M.; Wingfield, P. T.; Clore, G. M. Science 1991, 253,657. doi: 10.1126/science.1871600

    55. [55]

      (55) Odaert, B.; Jean, F.; Boutillon, C.; Buisine, E.; Melnyk, O.;Tartar, A.; Lippens, G. Protein Sci. 1999, 8, 2773.

    56. [56]

      (56) Dahiyat, B. I.; Mayo, S. L. Science 1997, 278, 82. doi: 10.1126/science.278.5335.82

    57. [57]

      (57) McCallister, E. L.; Alm, E.; Baker, D. Nat. Struct. Biol. 2000, 7,669. doi: 10.1038/77971

    58. [58]

      (58) Kmiecik, S.; Kolinski, A. Biophys. J. 2008, 94, 726. doi: 10.1529/biophysj.107.116095

    59. [59]

      (59) Hu, J. P.; He, H. Q.; Jiao, X.; Chang, S. Mol. Simulat. 2013, doi: 10.1080/08927022.2013.773431

    60. [60]

      (60) Jorgensen, W. L.; Tirado-Rives, J. J. Am. Chem. Soc. 1988, 110,1657. doi: 10.1021/ja00214a001

    61. [61]

      (61) Jorgensen, W. L.; Maxwell, D. S.; Tirado-Rives, J. J. Am. Chem. Soc. 1996, 118, 11225. doi: 10.1021/ja9621760

    62. [62]

      (62) Christen, M.; Hunenberger, P. H.; Bakowies, D.; Baron, R.;Bürgi, R.; Geerke, D. P.; Heinz, T. N.; Kastenholz, M. A.;Kräutler, V.; Oostenbrink, C.; Peter, C.; Trzesniak, D.; vanGunsteren, W. F. J. Comput. Chem. 2005, 26, 1719.

    63. [63]

      (63) Hess, B.; Kutzner, C.; van der Spoel, D.; Lindahl, E. J. Chem. Theory Comput. 2008, 4, 435. doi: 10.1021/ct700301q

    64. [64]

      (64) Weiner, S. J.; Kollman, P. A.; Case, D. A.; Singh, C.; Ghio, C.;Ala na, G.; Profeta, S.; Weiner, P. J. Am. Chem. Soc. 1984,106, 765. doi: 10.1021/ja00315a051

    65. [65]

      (65) Brooks, B. R.; Bruccoleri, R. E.; Olafson, B. D.; States, D. J.;Swaminathan, S.; Karplus, M. J. Comput. Chem. 1983, 4, 187.

    66. [66]

      (66) Halgren, T. A.; Damm, W. Curr. Opin. Struct. Biol. 2001, 11,236. doi: 10.1016/S0959-440X(00)00196-2

    67. [67]

      (67) Kaminski, G. A.; Stern, H. A.; Berne, B. J.; Friesner, R. A.; Cao,Y. X.; Murphy, R. B.; Zhou, R.; Halgren, T. A. J. Comput. Chem. 2002, 23, 1515. doi: 10.1002/jcc.10125

    68. [68]

      (68) Jorgensen, W. L. J. Chem. Theory Comput. 2007, 3, 1877. doi: 10.1021/ct700252g

    69. [69]

      (69) Wu, X. M.; Yang, G.; Zhou, L. J. Theor. Chem. Acc. 2012, 131,1229. doi: 10.1007/s00214-012-1229-4

    70. [70]

      (70) Wu, X. M.; Yang, G.; Zu, Y. G.; Fu, Y. J.; Zhou, L. J.; Yuan, X.H. Mol. Simulat. 2012, 38, 161. doi: 10.1080/08927022.2011.610795

    71. [71]

      (71) Neidigh, J. W.; Fesinmeyer, R. M.; Andersen, N. H. Nat. Struct. Biol. 2002, 9, 425. doi: 10.1038/nsb798

    72. [72]

      (72) Qiu, L.; Pabit, S. A.; Roitberg, A. E.; Hagen, S. J. J. Am. Chem. Soc. 2002, 124, 12952. doi: 10.1021/ja0279141

    73. [73]

      (73) Neuweiler, H.; Doose, S.; Sauer, M. Proc. Natl. Acad. Sci. U. S. A. 2005, 102, 16650. doi: 10.1073/pnas.0507351102

    74. [74]

      (74) Streicher, W. W.; Makhatadze, G. I. Biochemistry 2007, 46,2876. doi: 10.1021/bi602424x

    75. [75]

      (75) Iavarone, A. T.; Parks, J. H. J. Am. Chem. Soc. 2005, 127,8606. doi: 10.1021/ja051788u

    76. [76]

      (76) Qiu, L. L.; Hagen, S. J. Chem. Phys. 2004, 307, 243. doi: 10.1016/j.chemphys.2004.04.030

    77. [77]

      (77) Qiu, L. L.; Hagen, S. J. J. Am. Chem. Soc. 2004, 126, 3398. doi: 10.1021/ja049966r

    78. [78]

      (78) Ahmed, Z.; Beta, I. A.; Mikhonin, A. V.; Asher, S. A. J. Am. Chem. Soc. 2005, 127, 10943. doi: 10.1021/ja050664e

    79. [79]

      (79) Paschek, D.; Nymeyer, H.; Garcia, A. E. J. Struct. Biol. 2007,157, 524. doi: 10.1016/j.jsb.2006.10.031

    80. [80]

      (80) Pitera, J. W.; Swope, W. Proc. Natl. Acad. Sci. U. S. A. 2003,100, 7587. doi: 10.1073/pnas.1330954100

    81. [81]

      (81) Zhou, R. Proc. Natl. Acad. Sci. U. S. A. 2003, 100, 13280. doi: 10.1073/pnas.2233312100

    82. [82]

      (82) Chowdhury, S.; Lee, M. C.; Duan, Y. J. Phys. Chem. B 2004,108, 13855. doi: 10.1021/jp0478920

    83. [83]

      (83) Hu, Z.; Tang, Y.; Wang, H.; Zhang, X.; Lei, M. Arch. Biochem. Biophys. 2008, 475, 140. doi: 10.1016/j.abb.2008.04.024

    84. [84]

      (84) Juraszek, J.; Bolhuis, P. G. Proc. Natl. Acad. Sci. U. S. A. 2006,103, 15859. doi: 10.1073/pnas.0606692103

    85. [85]

      (85) Day, R.; Paschek, D.; García, A. E. Proteins 2010, 78, 1889.

    86. [86]

      (86) Duan, L. L.; Mei, Y.; Li, Y. L.; Zhang, Q. G.; Zhang, D. W.;Zhang, J. Z. H. Sci. China Ser. B 2010, 53, 196. doi: 10.1007/s11426-009-0196-7

    87. [87]

      (87) Mei, Y.; Wei, C. Y.; Yip, Y. M.; Ho, C. Y.; Zhang, J. Z. H.;Zhang, D. W. Theor. Chem. Acc. 2012, 131, 1168. doi: 10.1007/s00214-012-1168-0

    88. [88]

      (88) Mok, K. H.; Kuhn, L. T.; ez, M.; Day, I. J.; Lin, J. C.;Andersen, N. H.; Hore, P. J. Nature 2007, 447, 106. doi: 10.1038/nature05728

    89. [89]

      (89) Brylinski, M.; Konieczny, L.; Roterman, I. Comput. Biol. Chem. 2006, 30, 255. doi: 10.1016/j.compbiolchem.2006.04.007

    90. [90]

      (90) Arai, M.; Kondrashkina, E.; Kayatekin, C.; Matthews, C. R.;Iwakura, M.; Bilsel, O. J. Mol. Biol. 2007, 368, 219. doi: 10.1016/j.jmb.2007.01.085

    91. [91]

      (91) Dill, K. A.; Fiebig, K. M.; Chan, H. S. Proc. Natl. Acad. Sci. U. S. A. 1993, 90, 1942. doi: 10.1073/pnas.90.5.1942

    92. [92]

      (92) Barua, B.; Lin, J. C.; Williams, V. D.; Kummler, P.; Neidigh, J.W.; Andersen, N. H. Protein Eng. Des. Sel. 2008, 21, 171. doi: 10.1093/protein/gzm082

    93. [93]

      (93) Wu, X. M.; Zu, Y. G.; Yang, Z. W.; Fu, Y. J.; Zhou, L. J.; Yang,G. Acta Phys. -Chim. Sin. 2009, 25, 773. [吴晓敏, 祖元刚,杨志伟, 付玉杰,周丽君,杨刚.物理化学学报, 2009, 25,773.] doi: 10.3866/PKU.WHXB20090333

    94. [94]

      (94) Wu, X. M.; Yang, G.; Zu, Y. G.; Fu, Y. J.; Yuan, X. H. Comput. Theor. Chem. 2011, 973 (1-3), 1.

    95. [95]

      (95) Yao, X. Q.; She, Z. S. Biochem. Biophys. Res. Commun. 2008,373, 64. doi: 10.1016/j.bbrc.2008.05.179

    96. [96]

      (96) Gao, M.; Zhu, H. Q.; Yao, X. Q.; She, Z. S. Biochem. Biophys. Res. Commun. 2010, 392, 95. doi: 10.1016/j.bbrc.2010.01.003

    97. [97]

      (97) Gao, M.; Yao, X. Q.; She, Z. S.; Liu, Z. R.; Zhu, H. Q. Acta Phys. -Chim. Sin. 2010, 26, 1998. [高萌, 姚新秋, 佘振苏,刘志荣, 朱怀球.物理化学学报, 2010, 26, 1998.] doi: 10.3866/PKU.WHXB20100733

    98. [98]

      (98) Bunagan, M. R.; Yang, X.; Saven, J. G.; Gai, F. J. Phys. Chem. B 2006, 110, 3759.

    99. [99]

      (99) Day, R.; Bennion, B. J.; Ham, S.; Daggett, V. J. Mol. Biol.2002, 322, 189. doi: 10.1016/S0022-2836(02)00672-1

    100. [100]

      (100) Zhou, R. H.; Berne, B. J.; Germain, R. Proc. Nat. Acad. Sci. U. S. A. 2001, 98, 14931. doi: 10.1073/pnas.201543998

    101. [101]

      (101) Settanni, G.; Fersht, A. R. Biophys. J. 2008, 94, 4444. doi: 10.1529/biophysj.107.122606

    102. [102]

      (102) Kony, D. B.; Hünenberger, P. H.; van Gunsteren, W. F. Protein Sci. 2007, 16, 1101.

    103. [103]

      (103) Wroblowski, B.; Diaz, J. F.; Heremans, K.; Engelborghs, Y.Proteins 1996, 25, 446.

    104. [104]

      (104) Wang, J. H.; Zhang, Z. Y.; Liu, H. Y.; Shi, Y. Y. Acta Biophys. Sin. 2004, 20, 315. [王吉华,张志勇, 刘海燕, 施蕴渝. 生物物理学报, 2004, 20, 315.]

    105. [105]

      (105) Hillson, N.; Onuchic, J. N.; García, A. E. Proc. Natl. Acad. Sci. U. S. A. 1999, 96, 14848. doi: 10.1073/pnas.96.26.14848

    106. [106]

      (106) Bennion, B. J.; Daggett, V. Proc. Natl. Acad. Sci. U. S. A.2003, 100, 5142. doi: 10.1073/pnas.0930122100

    107. [107]

      (107) Rogne, P.; Ozdowy, P.; Richter, C.; Saxena, K.; Schwalbe, H.;Kuhn, L. T. PloS One 2012, 7, e41301.

    108. [108]

      (108) Rief, M.; Gautel, M.; Oesterhelt, F.; Fernandez, J. M.; Gaub,H. E. Science 1997, 276, 1109. doi: 10.1126/science.276.5315.1109

    109. [109]

      (109) Fernandez, J. M.; Li, H. Science 2004, 303, 1674. doi: 10.1126/science.1092497

    110. [110]

      (110) Karsai, á.; Kellermayer, M. S.; Harris, S. P. Biophys. J. 2011,101, 1968. doi: 10.1016/j.bpj.2011.08.030

    111. [111]

      (111) Borgia, A.; Steward, A.; Clarke, J. Angew. Chem. Int. Edit.2008, 47, 6900. doi: 10.1002/anie.v47:36

    112. [112]

      (112) Garcia-Manyes, S.; Dougan, L.; Badilla, C. L.; Brujic, J.;Fernandez, J. M. Proc. Natl. Acad. Sci. U. S. A. 2009, 106,10534. doi: 10.1073/pnas.0901213106

    113. [113]

      (113) Wu, X. M.; Yang, G.; Zu, Y. G.; Yang, Z. W.; Zhou, L. J. In Silico Biol. 2009, 9, 271.

    114. [114]

      (114) Yang, G.; Wu, X. M.; Zu, Y. G.; Yang, Z. W.; Zhou, L. J.J. Theor. Comput. Chem. 2009, 8, 317.


  • 加载中
    1. [1]

      Fei Xie Chengcheng Yuan Haiyan Tan Alireza Z. Moshfegh Bicheng Zhu Jiaguo Yud带中心调控过渡金属单原子负载COF吸附O2的理论计算研究. Acta Physico-Chimica Sinica, 2024, 40(11): 2407013-. doi: 10.3866/PKU.WHXB202407013

    2. [2]

      Zhonghua Xi Xuanfeng Kong Jinyue Yang Bin Liu Tingyu Zhu Hui Zhang Wenwei Zhang . Construction of Public Teaching Instrument Platform and Exploration of Opening Mechanism. University Chemistry, 2024, 39(7): 200-206. doi: 10.12461/PKU.DXHX202405123

    3. [3]

      Congying Lu Fei Zhong Zhenyu Yuan Shuaibing Li Jiayao Li Jiewen Liu Xianyang Hu Liqun Sun Rui Li Meijuan Hu . Experimental Improvement of Surfactant Interface Chemistry: An Integrated Design for the Fusion of Experiment and Simulation. University Chemistry, 2024, 39(3): 283-293. doi: 10.3866/PKU.DXHX202308097

    4. [4]

      Qingying Gao Tao Luo Jianyuan Su Chaofan Yu Jiazhu Li Bingfei Yan Wenzuo Li Zhen Zhang Yi Liu . Refinement and Expansion of the Classic Cinnamic Acid Synthesis Experiment. University Chemistry, 2024, 39(5): 243-250. doi: 10.3866/PKU.DXHX202311074

    5. [5]

      Xuan Zhou Yi Fan Zhuoqi Jiang Zhipeng Li Guowen Yuan Laiying Zhang Xu Hou . Liquid Gating Mechanism and Basic Properties Characterization: a New Experimental Design for Interface and Surface Properties in the Chemistry “101 Plan”. University Chemistry, 2024, 39(10): 113-120. doi: 10.12461/PKU.DXHX202407111

    6. [6]

      Pingping Zhu Yongjun Xie Yuanping Yi Yu Huang Qiang Zhou Shiyan Xiao Haiyang Yang Pingsheng He . Excavation and Extraction of Ideological and Political Elements for the Virtual Simulation Experiments at Molecular Level: Taking the Project “the Simulation and Computation of Conformation, Morphology and Dimensions of Polymer Chains” as an Example. University Chemistry, 2024, 39(2): 83-88. doi: 10.3866/PKU.DXHX202309063

    7. [7]

      Hua Hou Baoshan Wang . Course Ideology and Politics Education in Theoretical and Computational Chemistry. University Chemistry, 2024, 39(2): 307-313. doi: 10.3866/PKU.DXHX202309045

    8. [8]

      Yiying Yang Dongju Zhang . Elucidating the Concepts of Thermodynamic Control and Kinetic Control in Chemical Reactions through Theoretical Chemistry Calculations: A Computational Chemistry Experiment on the Diels-Alder Reaction. University Chemistry, 2024, 39(3): 327-335. doi: 10.3866/PKU.DXHX202309074

    9. [9]

      Tianlong Zhang Rongling Zhang Hongsheng Tang Yan Li Hua Li . Online Monitoring and Mechanistic Analysis of 3,5-diamino-1,2,4-triazole (DAT) Synthesis via Raman Spectroscopy: A Recommendation for a Comprehensive Instrumental Analysis Experiment. University Chemistry, 2024, 39(6): 303-311. doi: 10.3866/PKU.DXHX202312006

    10. [10]

      Xuyang Wang Jiapei Zhang Lirui Zhao Xiaowen Xu Guizheng Zou Bin Zhang . Theoretical Study on the Structure and Stability of Copper-Ammonia Coordination Ions. University Chemistry, 2024, 39(3): 384-389. doi: 10.3866/PKU.DXHX202309065

    11. [11]

      Keweiyang Zhang Zihan Fan Liyuan Xiao Haitao Long Jing Jing . Unveiling Crystal Field Theory: Preparation, Characterization, and Performance Assessment of Nickel Macrocyclic Complexes. University Chemistry, 2024, 39(5): 163-171. doi: 10.3866/PKU.DXHX202310084

    12. [12]

      Qiang Xu Rong Zhang Liyan Zhang Jinxuan Liu Shuo Wu Rongwen Lv . Exploration and Practice of Ideological and Political Education Construction in the Course of Practical Instrument Analysis Theory. University Chemistry, 2024, 39(6): 132-136. doi: 10.3866/PKU.DXHX202311018

    13. [13]

      Yongqing Kuang Jie Liu Jianjun Feng Wen Yang Shuanglian Cai Ling Shi . Experimental Design for the Two-Step Synthesis of Paracetamol from 4-Hydroxyacetophenone. University Chemistry, 2024, 39(8): 331-337. doi: 10.12461/PKU.DXHX202403012

    14. [14]

      Geyang Song Dong Xue Gang Li . Recent Advances in Transition Metal-Catalyzed Synthesis of Anilines from Aryl Halides. University Chemistry, 2024, 39(2): 321-329. doi: 10.3866/PKU.DXHX202308030

    15. [15]

      Zijian Zhao Yanxin Shi Shicheng Li Wenhong Ruan Fang Zhu Jijun Jiang . A New Exploration of the Preparation of Polyacrylic Acid by Free Radical Polymerization Based on the Concept of Green Chemistry. University Chemistry, 2024, 39(5): 315-324. doi: 10.3866/PKU.DXHX202311094

    16. [16]

      Ping Song Nan Zhang Jie Wang Rui Yan Zhiqiang Wang Yingxue Jin . Experimental Teaching Design on Synthesis and Antitumor Activity Study of Cu-Pyropheophorbide-a Methyl Ester. University Chemistry, 2024, 39(6): 278-286. doi: 10.3866/PKU.DXHX202310087

    17. [17]

      Xiaofeng Zhu Bingbing Xiao Jiaxin Su Shuai Wang Qingran Zhang Jun Wang . Transition Metal Oxides/Chalcogenides for Electrochemical Oxygen Reduction into Hydrogen Peroxides. Acta Physico-Chimica Sinica, 2024, 40(12): 2407005-. doi: 10.3866/PKU.WHXB202407005

    18. [18]

      Ping Cai Yaxian Zhu Tao Hu . Frontier Research and Basic Theory in the Classroom: an Introduction to the Inorganic Chemistry Teaching Case under the Chemistry “101 Plan”. University Chemistry, 2024, 39(10): 84-88. doi: 10.12461/PKU.DXHX202408027

    19. [19]

      Huan LIShengyan WANGLong ZhangYue CAOXiaohan YANGZiliang WANGWenjuan ZHUWenlei ZHUYang ZHOU . Growth mechanisms and application potentials of magic-size clusters of groups Ⅱ-Ⅵ semiconductors. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1425-1441. doi: 10.11862/CJIC.20240088

    20. [20]

      Yukun Chang Haoqin Huang Baolei Wang . Preparation of Trans-Cinnamic Acid via “One-Pot” Protocol of Aldol Condensation-Hydrolysis Reaction: Recommending an Improved Organic Synthesis Experiment. University Chemistry, 2024, 39(4): 322-328. doi: 10.3866/PKU.DXHX202309095

Metrics
  • PDF Downloads(1051)
  • Abstract views(852)
  • HTML views(18)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return