Citation: WU Xiao-Min, YUAN Xiao-Hui, XUE Shu-Lei, ZHA Ling-Sheng, WANG Guang-Li, ZHANG Hai-Jun. Research Progress of the Trp-Cage Formation and Its Folding Mechanism[J]. Acta Physico-Chimica Sinica, ;2013, 29(09): 1842-1850. doi: 10.3866/PKU.WHXB201307011 shu

Research Progress of the Trp-Cage Formation and Its Folding Mechanism

  • Received Date: 26 February 2013
    Available Online: 1 July 2013

    Fund Project: 国家自然科学基金(81272377, 31100083) (81272377, 31100083)安徽省自然科学基金(1208085QC58) (1208085QC58)安徽省高校省级自然科学研究项目(KJ2012B163,2012SQRL225) (KJ2012B163,2012SQRL225)淮北师范大学引进人才基金(600698)资助 (600698)

  • Protein folding is considered one of the most important topics in structural biology. An in-depth understanding of the folding-function relationship is one of the most important subjects for biologists, and is of interest to scientific researchers in other disciplines. The folding of proteins is often completed within the order of milliseconds to seconds, whereas the underlying atomistic details corresponding to structural alterations and intermolecular interactions often occur on the nanosecond or even smaller timescales. Accordingly, the unambiguous description of complicated folding behaviors remains inaccessible to routine experimental and theoretically-calculated resolutions. In this paper, we reviewthe problems that exist in recent experimental and theoretical studies examining the protein folding mechanism. The Trp-cage is a fast-folding mini-protein containing merely 20 amino acid residues, but adopts a well-packed hydrophobic core and tertiary contacts. Herein, we use the Trp-cage as an example and summarize the experimental and theoretical research carried out on the Trp-cage formation and its folding mechanism. The presentation primarily focuses on three aspects: (1) the folding temperature; (2) the folding initiation and proposed folding mechanisms; and (3) the role of key residues and its driving force for the folding of the Trp-cage mini-protein. Finally, we provide some suggestions on how to effectively simplify the complicated interaction networks of the Trp-cage mini-protein and decrease the complexity of the folding mechanism. This helps us to clarify the respective and cooperative contributions of residues involved in the formation of the Trp-cage and its folding dynamics, as well as provide useful insights for folding studies and more efficient rational peptide design.

  • 加载中
    1. [1]

      (1) Yan, L. F.; Sun, Z. R. Molecular Structure of Protein; TsinghuaUniversity Press: Beijing, 1999. [阎隆飞,孙之荣.蛋白质分子结构.北京:清华大学出版社, 1999.]

    2. [2]

      (2) Vendruscolo, M. Curr. Opin. Struct. Biol. 2007, 17, 15. doi: 10.1016/j.sbi.2007.01.002

    3. [3]

      (3) Fink, A. L. Curr. Opin. Struct. Biol. 2005, 15, 35. doi: 10.1016/j.sbi.2005.01.002

    4. [4]

      (4) Karplus, M.; McCammon, J. A. Nat. Struct. Biol. 2002, 9, 646.doi: 10.1038/nsb0902-646

    5. [5]

      (5) Parak, F. G. Rep. Prog. Phys. 2003, 66, 103. doi: 10.1088/0034-4885/66/2/201

    6. [6]

      (6) Thomas, P. J.; Qu, B. H.; Pedersen, P. L. Trends Biochem. Sci.1995, 20, 456. doi: 10.1016/S0968-0004(00)89100-8

    7. [7]

      (7) Gellman, S. H.; Woolfson, D. N. Nat. Struct. Biol. 2002, 9, 408.doi: 10.1038/nsb0602-408

    8. [8]

      (8) Chellgren, B. W.; Creamer, T. P. Biochemistry 2004, 43, 5864.doi: 10.1021/bi049922v

    9. [9]

      (9) Woody, R. Adv. Biophys. Chem. 1992, 2, 37.

    10. [10]

      (10) Zhang, Z. Q. Acta Phys. -Chim. Sin. 2012, 28, 2381. [张竹青.物理化学学报, 2012, 28, 2381.] doi: 10.3866/PKU.WHXB201209144

    11. [11]

      (11) Chen, K. X.; Jiang, H. L.; Ji, R. Y. Computer Aided Drug Design——Principle, Methods and Application; ShanghaiScientific Technology Press: Shanghai, 2000. [陈凯先, 蒋华良, 嵇汝运.计算机辅助药物设计——原理、方法及应用. 上海: 上海科学技术出版社, 2000.]

    12. [12]

      (12) Thirumalai, D.; Liu, Z. X.; O'Brien, E. P.; Reddy, G. Curr. Opin. Struct. Biol. 2013, 23, 22. doi: 10.1016/j.sbi.2012.11.010

    13. [13]

      (13) Cai, W. S.; Chipot, C. Acta Chim. Sin. 2013, 71, 159. [蔡文生,Chipot, C.化学学报, 2013, 71, 159.] doi: 10.6023/A12110930

    14. [14]

      (14) Fuentes, G.; Nederveen, A. J.; Kaptein, R.; Boelens, R.; Bonvin,A. M. J. Biomol. NMR 2005, 33, 175. doi: 10.1007/s10858-005-3207-9

    15. [15]

      (15) Wong, K. B.; Clarke, J.; Bond, C. J.; Neira, J. L.; Freund, S. M.;Fersht, A. R.; Daggett, V. J. Mol. Biol. 2000, 296, 1257. doi: 10.1006/jmbi.2000.3523

    16. [16]

      (16) Engen, J. R. Anal. Chem. 2009, 81, 7870. doi: 10.1021/ac901154s

    17. [17]

      (17) Iacob, R. E; Engen, J. R. J. Am. Soc. Mass Spectrom. 2012, 23,1003. doi: 10.1007/s13361-012-0377-z

    18. [18]

      (18) Dill, K. A.; Ozkan, B. S.; Shell, M.; Weikl, T. R. Ann. Rev. Biophys. 2008, 37, 289. doi: 10.1146/annurev.biophys.37.092707.153558

    19. [19]

      (19) Onuchic, J. N.; Wolyness, P. G. Curr. Opin. Struct. Biol. 2004,14, 70. doi: 10.1016/j.sbi.2004.01.009

    20. [20]

      (20) Rizzuti, B.; Daggett, V. Arch. Biochem. Biophys. 2013, 531,128. doi: 10.1016/j.abb.2012.12.015

    21. [21]

      (21) Lindorff-Larsen, K.; Piana, S.; Dror, R. O.; Shaw, D. E. Science2011, 334, 517. doi: 10.1126/science.1208351

    22. [22]

      (22) Shaw, D. E.; Maragakis, P.; Lindorff-Larsen, K.; Piana, S.; Dror,R. O.; Eastwood, M. P.; Bank, J. A.; Jumper, J. M.; Salmon, J.K.; Shan, Y.; Wriggers, W. Science 2010, 330, 341. doi: 10.1126/science.1187409

    23. [23]

      (23) Chan, H. S.; Zhang, Z.; Wallin, S.; Liu, Z. Annu. Rev. Phys. Chem. 2011, 62, 301. doi: 10.1146/annurev-physchem-032210-103405

    24. [24]

      (24) odfellow, J. M.; Moss, D. S. Computer Modeling of Biomolecular Process; Bllis Horwood: NewYork, 1992.

    25. [25]

      (25) Warshel, A. Computer Modeling of Chemical Reactions in Enzymes and Solutions; Jonh Wilev&Sons: NewYork, 1991.

    26. [26]

      (26) Leopold, P.; Montal, M.; Onuchic, J. Proc. Natl. Acad. Sci. U. S. A. 1992, 89, 8721. doi: 10.1073/pnas.89.18.8721

    27. [27]

      (27) Bryngelson, J. D.; Onuchic, J. N.; Socci, N. D.; Wolynes, P. G.Proteins 1995, 21, 167.

    28. [28]

      (28) Mirny, L. A.; Shakhnovich, E. I. Annu. Rev. Biophys. Biomol. Struct. 2001, 30, 361. doi: 10.1146/annurev.biophys.30.1.361

    29. [29]

      (29) Dill, K. A.; Chan, H. S. Nat. Struct. Biol. 1997, 4, 10. doi: 10.1038/nsb0197-10

    30. [30]

      (30) Anfinsen, C. B. Science 1973, 181, 223. doi: 10.1126/science.181.4096.223

    31. [31]

      (31) Thukral, L.; Smith, J. C.; Daidone, I. J. Am. Chem. Soc. 2009,131, 18147. doi: 10.1021/ja9064365

    32. [32]

      (32) Ma, B.; Nussinov, R. J. Mol. Biol. 2000, 296, 1091. doi: 10.1006/jmbi.2000.3518

    33. [33]

      (33) Wu, X. M.; Yang, G.; Zu, Y. G.; Zhou, L. J. Comput. Biol. Chem. 2012, 38, 1. doi: 10.1016/j.compbiolchem.2012.02.003

    34. [34]

      (34) Liu, F. F.; Dong, X. Y.; Sun, Y. J. Mol. Graph. Model. 2008, 27,421. doi: 10.1016/j.jmgm.2008.07.002

    35. [35]

      (35) Li, W.; Zhang, J.; Su, Y.; Wang, J.; Qin, M.; Wang, W. J. Phys. Chem. B 2007, 111, 13814. doi: 10.1021/jp076213t

    36. [36]

      (36) Lazo, N. D.; Grant, M. A.; Condron, M. C.; Rigby, A. C.;Teplow, D. B. Protein Sci. 2005, 14, 1581.

    37. [37]

      (37) Guarnera, E.; Pellarin, R.; Caflisch, A. Biophys. J. 2009, 97,1737. doi: 10.1016/j.bpj.2009.06.047

    38. [38]

      (38) Cecchini, M.; Curcio, R.; Pappalardo, M.; Melki, R.; Caflisch,A. J. Mol. Biol. 2006, 357, 1306. doi: 10.1016/j.jmb.2006.01.009

    39. [39]

      (39) Convertino, M.; Pellarin, R.; Catto, M.; Carotti, A.; Caflisch, A.Protein Sci. 2009, 18, 792.

    40. [40]

      (40) Scherzer-Attali, R.; Pellarin, R.; Convertino, M.; Frydman-Marom, A.; E z-Matia, N.; Peled, S.; Levy-Sakin, M.; Shalev,D. E.; Caflisch, A.; Gazit, E.; Segal, D. PloS One 2010, 5,e11101.

    41. [41]

      (41) Terwilliger, T. C.; Eisenberg, D. J. Biol. Chem. 1982, 257, 6016.

    42. [42]

      (42) Tanizaki, S.; Clifford, J.; Connelly, B. D.; Feig, M. Biophys. J.2008, 94, 747. doi: 10.1529/biophysj.107.116236

    43. [43]

      (43) Predeus, A. V.; Gul, S.; pal, S. M.; Feig, M. J. Phys. Chem. B2012, 116, 8610. doi: 10.1021/jp300129u

    44. [44]

      (44) Shao, Q.; Zhu, W. L.; Gao, Y. Q. J. Phys. Chem. B 2012, 116,13848. doi: 10.1021/jp307684h

    45. [45]

      (45) Halabis, A.; Zmudzinska, W.; Liwo, A.; O?dziej, S. J. Phys. Chem. B 2012, 116, 6898. doi: 10.1021/jp212630y

    46. [46]

      (46) Adams, C. M.; Kjeldsen, F.; Zubarev, R. A.; Budnik, B. A.;Haselmann, K. F. J. Am. Soc. Mass Spectrom. 2004, 15,1087. doi: 10.1016/j.jasms.2004.04.026

    47. [47]

      (47) Miklos, A. C.; Sarkar, M.; Wang, Y.; Pielak, G. J. J. Am. Chem. Soc. 2011, 133, 7116. doi: 10.1021/ja200067p

    48. [48]

      (48) Feig, M.; Sugita, Y. J. Phys. Chem. B 2012, 116, 599. doi: 10.1021/jp209302e

    49. [49]

      (49) Klein-Seetharaman, J.; Oikawa, M.; Grimshaw, S. B.;Wirmer,J.; Duchardt, E.; Ueda, T.; Imoto, T.; Smith, L. J.; Dobson, C.M.; Schwalbe, H. Science 2002, 295, 1719. doi: 10.1126/science.1067680

    50. [50]

      (50) Radford, S. E.; Dobson, C. M.; Evans, P. A. Nature 1992, 358,302. doi: 10.1038/358302a0

    51. [51]

      (51) Xu, J.; Baase, W. A.; Baldwin, E.; Matthews, B. W. Protein Sci.1998, 7, 158.

    52. [52]

      (52) Li, W.; Zhang, J.; Wang, J.; Wang, W. J. Am. Chem. Soc. 2008,130, 892. doi: 10.1021/ja075302g

    53. [53]

      (53) Palmer, A. G., III; Rance, M.; Wright, P. E. J. Am. Chem. Soc.1991, 113, 4371. doi: 10.1021/ja00012a001

    54. [54]

      (54) Gronenborn, A. M.; Filpula, D. R.; Essig, N. Z.; Achari, A.;Whitlow, M.; Wingfield, P. T.; Clore, G. M. Science 1991, 253,657. doi: 10.1126/science.1871600

    55. [55]

      (55) Odaert, B.; Jean, F.; Boutillon, C.; Buisine, E.; Melnyk, O.;Tartar, A.; Lippens, G. Protein Sci. 1999, 8, 2773.

    56. [56]

      (56) Dahiyat, B. I.; Mayo, S. L. Science 1997, 278, 82. doi: 10.1126/science.278.5335.82

    57. [57]

      (57) McCallister, E. L.; Alm, E.; Baker, D. Nat. Struct. Biol. 2000, 7,669. doi: 10.1038/77971

    58. [58]

      (58) Kmiecik, S.; Kolinski, A. Biophys. J. 2008, 94, 726. doi: 10.1529/biophysj.107.116095

    59. [59]

      (59) Hu, J. P.; He, H. Q.; Jiao, X.; Chang, S. Mol. Simulat. 2013, doi: 10.1080/08927022.2013.773431

    60. [60]

      (60) Jorgensen, W. L.; Tirado-Rives, J. J. Am. Chem. Soc. 1988, 110,1657. doi: 10.1021/ja00214a001

    61. [61]

      (61) Jorgensen, W. L.; Maxwell, D. S.; Tirado-Rives, J. J. Am. Chem. Soc. 1996, 118, 11225. doi: 10.1021/ja9621760

    62. [62]

      (62) Christen, M.; Hunenberger, P. H.; Bakowies, D.; Baron, R.;Bürgi, R.; Geerke, D. P.; Heinz, T. N.; Kastenholz, M. A.;Kräutler, V.; Oostenbrink, C.; Peter, C.; Trzesniak, D.; vanGunsteren, W. F. J. Comput. Chem. 2005, 26, 1719.

    63. [63]

      (63) Hess, B.; Kutzner, C.; van der Spoel, D.; Lindahl, E. J. Chem. Theory Comput. 2008, 4, 435. doi: 10.1021/ct700301q

    64. [64]

      (64) Weiner, S. J.; Kollman, P. A.; Case, D. A.; Singh, C.; Ghio, C.;Ala na, G.; Profeta, S.; Weiner, P. J. Am. Chem. Soc. 1984,106, 765. doi: 10.1021/ja00315a051

    65. [65]

      (65) Brooks, B. R.; Bruccoleri, R. E.; Olafson, B. D.; States, D. J.;Swaminathan, S.; Karplus, M. J. Comput. Chem. 1983, 4, 187.

    66. [66]

      (66) Halgren, T. A.; Damm, W. Curr. Opin. Struct. Biol. 2001, 11,236. doi: 10.1016/S0959-440X(00)00196-2

    67. [67]

      (67) Kaminski, G. A.; Stern, H. A.; Berne, B. J.; Friesner, R. A.; Cao,Y. X.; Murphy, R. B.; Zhou, R.; Halgren, T. A. J. Comput. Chem. 2002, 23, 1515. doi: 10.1002/jcc.10125

    68. [68]

      (68) Jorgensen, W. L. J. Chem. Theory Comput. 2007, 3, 1877. doi: 10.1021/ct700252g

    69. [69]

      (69) Wu, X. M.; Yang, G.; Zhou, L. J. Theor. Chem. Acc. 2012, 131,1229. doi: 10.1007/s00214-012-1229-4

    70. [70]

      (70) Wu, X. M.; Yang, G.; Zu, Y. G.; Fu, Y. J.; Zhou, L. J.; Yuan, X.H. Mol. Simulat. 2012, 38, 161. doi: 10.1080/08927022.2011.610795

    71. [71]

      (71) Neidigh, J. W.; Fesinmeyer, R. M.; Andersen, N. H. Nat. Struct. Biol. 2002, 9, 425. doi: 10.1038/nsb798

    72. [72]

      (72) Qiu, L.; Pabit, S. A.; Roitberg, A. E.; Hagen, S. J. J. Am. Chem. Soc. 2002, 124, 12952. doi: 10.1021/ja0279141

    73. [73]

      (73) Neuweiler, H.; Doose, S.; Sauer, M. Proc. Natl. Acad. Sci. U. S. A. 2005, 102, 16650. doi: 10.1073/pnas.0507351102

    74. [74]

      (74) Streicher, W. W.; Makhatadze, G. I. Biochemistry 2007, 46,2876. doi: 10.1021/bi602424x

    75. [75]

      (75) Iavarone, A. T.; Parks, J. H. J. Am. Chem. Soc. 2005, 127,8606. doi: 10.1021/ja051788u

    76. [76]

      (76) Qiu, L. L.; Hagen, S. J. Chem. Phys. 2004, 307, 243. doi: 10.1016/j.chemphys.2004.04.030

    77. [77]

      (77) Qiu, L. L.; Hagen, S. J. J. Am. Chem. Soc. 2004, 126, 3398. doi: 10.1021/ja049966r

    78. [78]

      (78) Ahmed, Z.; Beta, I. A.; Mikhonin, A. V.; Asher, S. A. J. Am. Chem. Soc. 2005, 127, 10943. doi: 10.1021/ja050664e

    79. [79]

      (79) Paschek, D.; Nymeyer, H.; Garcia, A. E. J. Struct. Biol. 2007,157, 524. doi: 10.1016/j.jsb.2006.10.031

    80. [80]

      (80) Pitera, J. W.; Swope, W. Proc. Natl. Acad. Sci. U. S. A. 2003,100, 7587. doi: 10.1073/pnas.1330954100

    81. [81]

      (81) Zhou, R. Proc. Natl. Acad. Sci. U. S. A. 2003, 100, 13280. doi: 10.1073/pnas.2233312100

    82. [82]

      (82) Chowdhury, S.; Lee, M. C.; Duan, Y. J. Phys. Chem. B 2004,108, 13855. doi: 10.1021/jp0478920

    83. [83]

      (83) Hu, Z.; Tang, Y.; Wang, H.; Zhang, X.; Lei, M. Arch. Biochem. Biophys. 2008, 475, 140. doi: 10.1016/j.abb.2008.04.024

    84. [84]

      (84) Juraszek, J.; Bolhuis, P. G. Proc. Natl. Acad. Sci. U. S. A. 2006,103, 15859. doi: 10.1073/pnas.0606692103

    85. [85]

      (85) Day, R.; Paschek, D.; García, A. E. Proteins 2010, 78, 1889.

    86. [86]

      (86) Duan, L. L.; Mei, Y.; Li, Y. L.; Zhang, Q. G.; Zhang, D. W.;Zhang, J. Z. H. Sci. China Ser. B 2010, 53, 196. doi: 10.1007/s11426-009-0196-7

    87. [87]

      (87) Mei, Y.; Wei, C. Y.; Yip, Y. M.; Ho, C. Y.; Zhang, J. Z. H.;Zhang, D. W. Theor. Chem. Acc. 2012, 131, 1168. doi: 10.1007/s00214-012-1168-0

    88. [88]

      (88) Mok, K. H.; Kuhn, L. T.; ez, M.; Day, I. J.; Lin, J. C.;Andersen, N. H.; Hore, P. J. Nature 2007, 447, 106. doi: 10.1038/nature05728

    89. [89]

      (89) Brylinski, M.; Konieczny, L.; Roterman, I. Comput. Biol. Chem. 2006, 30, 255. doi: 10.1016/j.compbiolchem.2006.04.007

    90. [90]

      (90) Arai, M.; Kondrashkina, E.; Kayatekin, C.; Matthews, C. R.;Iwakura, M.; Bilsel, O. J. Mol. Biol. 2007, 368, 219. doi: 10.1016/j.jmb.2007.01.085

    91. [91]

      (91) Dill, K. A.; Fiebig, K. M.; Chan, H. S. Proc. Natl. Acad. Sci. U. S. A. 1993, 90, 1942. doi: 10.1073/pnas.90.5.1942

    92. [92]

      (92) Barua, B.; Lin, J. C.; Williams, V. D.; Kummler, P.; Neidigh, J.W.; Andersen, N. H. Protein Eng. Des. Sel. 2008, 21, 171. doi: 10.1093/protein/gzm082

    93. [93]

      (93) Wu, X. M.; Zu, Y. G.; Yang, Z. W.; Fu, Y. J.; Zhou, L. J.; Yang,G. Acta Phys. -Chim. Sin. 2009, 25, 773. [吴晓敏, 祖元刚,杨志伟, 付玉杰,周丽君,杨刚.物理化学学报, 2009, 25,773.] doi: 10.3866/PKU.WHXB20090333

    94. [94]

      (94) Wu, X. M.; Yang, G.; Zu, Y. G.; Fu, Y. J.; Yuan, X. H. Comput. Theor. Chem. 2011, 973 (1-3), 1.

    95. [95]

      (95) Yao, X. Q.; She, Z. S. Biochem. Biophys. Res. Commun. 2008,373, 64. doi: 10.1016/j.bbrc.2008.05.179

    96. [96]

      (96) Gao, M.; Zhu, H. Q.; Yao, X. Q.; She, Z. S. Biochem. Biophys. Res. Commun. 2010, 392, 95. doi: 10.1016/j.bbrc.2010.01.003

    97. [97]

      (97) Gao, M.; Yao, X. Q.; She, Z. S.; Liu, Z. R.; Zhu, H. Q. Acta Phys. -Chim. Sin. 2010, 26, 1998. [高萌, 姚新秋, 佘振苏,刘志荣, 朱怀球.物理化学学报, 2010, 26, 1998.] doi: 10.3866/PKU.WHXB20100733

    98. [98]

      (98) Bunagan, M. R.; Yang, X.; Saven, J. G.; Gai, F. J. Phys. Chem. B 2006, 110, 3759.

    99. [99]

      (99) Day, R.; Bennion, B. J.; Ham, S.; Daggett, V. J. Mol. Biol.2002, 322, 189. doi: 10.1016/S0022-2836(02)00672-1

    100. [100]

      (100) Zhou, R. H.; Berne, B. J.; Germain, R. Proc. Nat. Acad. Sci. U. S. A. 2001, 98, 14931. doi: 10.1073/pnas.201543998

    101. [101]

      (101) Settanni, G.; Fersht, A. R. Biophys. J. 2008, 94, 4444. doi: 10.1529/biophysj.107.122606

    102. [102]

      (102) Kony, D. B.; Hünenberger, P. H.; van Gunsteren, W. F. Protein Sci. 2007, 16, 1101.

    103. [103]

      (103) Wroblowski, B.; Diaz, J. F.; Heremans, K.; Engelborghs, Y.Proteins 1996, 25, 446.

    104. [104]

      (104) Wang, J. H.; Zhang, Z. Y.; Liu, H. Y.; Shi, Y. Y. Acta Biophys. Sin. 2004, 20, 315. [王吉华,张志勇, 刘海燕, 施蕴渝. 生物物理学报, 2004, 20, 315.]

    105. [105]

      (105) Hillson, N.; Onuchic, J. N.; García, A. E. Proc. Natl. Acad. Sci. U. S. A. 1999, 96, 14848. doi: 10.1073/pnas.96.26.14848

    106. [106]

      (106) Bennion, B. J.; Daggett, V. Proc. Natl. Acad. Sci. U. S. A.2003, 100, 5142. doi: 10.1073/pnas.0930122100

    107. [107]

      (107) Rogne, P.; Ozdowy, P.; Richter, C.; Saxena, K.; Schwalbe, H.;Kuhn, L. T. PloS One 2012, 7, e41301.

    108. [108]

      (108) Rief, M.; Gautel, M.; Oesterhelt, F.; Fernandez, J. M.; Gaub,H. E. Science 1997, 276, 1109. doi: 10.1126/science.276.5315.1109

    109. [109]

      (109) Fernandez, J. M.; Li, H. Science 2004, 303, 1674. doi: 10.1126/science.1092497

    110. [110]

      (110) Karsai, á.; Kellermayer, M. S.; Harris, S. P. Biophys. J. 2011,101, 1968. doi: 10.1016/j.bpj.2011.08.030

    111. [111]

      (111) Borgia, A.; Steward, A.; Clarke, J. Angew. Chem. Int. Edit.2008, 47, 6900. doi: 10.1002/anie.v47:36

    112. [112]

      (112) Garcia-Manyes, S.; Dougan, L.; Badilla, C. L.; Brujic, J.;Fernandez, J. M. Proc. Natl. Acad. Sci. U. S. A. 2009, 106,10534. doi: 10.1073/pnas.0901213106

    113. [113]

      (113) Wu, X. M.; Yang, G.; Zu, Y. G.; Yang, Z. W.; Zhou, L. J. In Silico Biol. 2009, 9, 271.

    114. [114]

      (114) Yang, G.; Wu, X. M.; Zu, Y. G.; Yang, Z. W.; Zhou, L. J.J. Theor. Comput. Chem. 2009, 8, 317.


  • 加载中
    1. [1]

      Yanglin Jiang Mingqing Chen Min Liang Yige Yao Yan Zhang Peng Wang Jianping Zhang . Experimental and Theoretical Investigations of Solvent Polarity Effect on ESIPT Mechanism in 4′-N,N-diethylamino-3-hydroxybenzoflavone. Acta Physico-Chimica Sinica, 2025, 41(2): 100012-. doi: 10.3866/PKU.WHXB202309027

    2. [2]

      Hong CAIJiewen WUJingyun LILixian CHENSiqi XIAODan LI . Synthesis of a zinc-cobalt bimetallic adenine metal-organic framework for the recognition of sulfur-containing amino acids. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 114-122. doi: 10.11862/CJIC.20240382

    3. [3]

      Fei Xie Chengcheng Yuan Haiyan Tan Alireza Z. Moshfegh Bicheng Zhu Jiaguo Yud带中心调控过渡金属单原子负载COF吸附O2的理论计算研究. Acta Physico-Chimica Sinica, 2024, 40(11): 2407013-. doi: 10.3866/PKU.WHXB202407013

    4. [4]

      Xintian Xie Sicong Ma Yefei Li Cheng Shang Zhipan Liu . Application of Machine Learning Potential-based Theoretical Simulations in Undergraduate Teaching Laboratory Course Design. University Chemistry, 2025, 40(3): 140-147. doi: 10.12461/PKU.DXHX202405164

    5. [5]

      Qingying Gao Tao Luo Jianyuan Su Chaofan Yu Jiazhu Li Bingfei Yan Wenzuo Li Zhen Zhang Yi Liu . Refinement and Expansion of the Classic Cinnamic Acid Synthesis Experiment. University Chemistry, 2024, 39(5): 243-250. doi: 10.3866/PKU.DXHX202311074

    6. [6]

      Congying Lu Fei Zhong Zhenyu Yuan Shuaibing Li Jiayao Li Jiewen Liu Xianyang Hu Liqun Sun Rui Li Meijuan Hu . Experimental Improvement of Surfactant Interface Chemistry: An Integrated Design for the Fusion of Experiment and Simulation. University Chemistry, 2024, 39(3): 283-293. doi: 10.3866/PKU.DXHX202308097

    7. [7]

      Zhonghua Xi Xuanfeng Kong Jinyue Yang Bin Liu Tingyu Zhu Hui Zhang Wenwei Zhang . Construction of Public Teaching Instrument Platform and Exploration of Opening Mechanism. University Chemistry, 2024, 39(7): 200-206. doi: 10.12461/PKU.DXHX202405123

    8. [8]

      Hao XURuopeng LIPeixia YANGAnmin LIUJie BAI . Regulation mechanism of halogen axial coordination atoms on the oxygen reduction activity of Fe-N4 site: A density functional theory study. Chinese Journal of Inorganic Chemistry, 2025, 41(4): 695-701. doi: 10.11862/CJIC.20240302

    9. [9]

      Huanhuan XIEYingnan SONGLei LI . Two-dimensional single-layer BiOI nanosheets: Lattice thermal conductivity and phonon transport mechanism. Chinese Journal of Inorganic Chemistry, 2025, 41(4): 702-708. doi: 10.11862/CJIC.20240281

    10. [10]

      Pingping Zhu Yongjun Xie Yuanping Yi Yu Huang Qiang Zhou Shiyan Xiao Haiyang Yang Pingsheng He . Excavation and Extraction of Ideological and Political Elements for the Virtual Simulation Experiments at Molecular Level: Taking the Project “the Simulation and Computation of Conformation, Morphology and Dimensions of Polymer Chains” as an Example. University Chemistry, 2024, 39(2): 83-88. doi: 10.3866/PKU.DXHX202309063

    11. [11]

      Wenjun Yang Qiaoling Tan Wenjiao Xie Xiaoyu Pan Youyong Yuan . Construction and Characterization of Calcium Alginate Microparticle Drug Delivery System: A Novel Design and Teaching Practice in Polymer Experiments. University Chemistry, 2025, 40(3): 371-380. doi: 10.12461/PKU.DXHX202405150

    12. [12]

      Ying Zhang Fang Ge Zhimin Luo . AI-Driven Biochemical Teaching Research: Predicting the Functional Effects of Gene Mutations. University Chemistry, 2025, 40(3): 277-284. doi: 10.12461/PKU.DXHX202412104

    13. [13]

      Hua Hou Baoshan Wang . Course Ideology and Politics Education in Theoretical and Computational Chemistry. University Chemistry, 2024, 39(2): 307-313. doi: 10.3866/PKU.DXHX202309045

    14. [14]

      Wenkai Chen Yunjia Shen Xiangmeng Kong Yanli Zeng . Quantum Chemistry Calculation of Key Physical Quantity in Circularly Polarized Luminescence: Introducing an Exploratory Computational Chemistry Experiment. University Chemistry, 2025, 40(3): 83-91. doi: 10.12461/PKU.DXHX202405018

    15. [15]

      Xuan Zhou Yi Fan Zhuoqi Jiang Zhipeng Li Guowen Yuan Laiying Zhang Xu Hou . Liquid Gating Mechanism and Basic Properties Characterization: a New Experimental Design for Interface and Surface Properties in the Chemistry “101 Plan”. University Chemistry, 2024, 39(10): 113-120. doi: 10.12461/PKU.DXHX202407111

    16. [16]

      Tianlong Zhang Rongling Zhang Hongsheng Tang Yan Li Hua Li . Online Monitoring and Mechanistic Analysis of 3,5-diamino-1,2,4-triazole (DAT) Synthesis via Raman Spectroscopy: A Recommendation for a Comprehensive Instrumental Analysis Experiment. University Chemistry, 2024, 39(6): 303-311. doi: 10.3866/PKU.DXHX202312006

    17. [17]

      Yiying Yang Dongju Zhang . Elucidating the Concepts of Thermodynamic Control and Kinetic Control in Chemical Reactions through Theoretical Chemistry Calculations: A Computational Chemistry Experiment on the Diels-Alder Reaction. University Chemistry, 2024, 39(3): 327-335. doi: 10.3866/PKU.DXHX202309074

    18. [18]

      Qiaoqiao BAIAnqi ZHOUXiaowei LITang LIUSong LIU . Construction of pressure-temperature dual-functional flexible sensors and applications in biomedicine. Chinese Journal of Inorganic Chemistry, 2024, 40(12): 2259-2274. doi: 10.11862/CJIC.20240128

    19. [19]

      Mingxin LULiyang ZHOUXiaoyu XUXiaoying FENGHui WANGBin YANJie XUChao CHENHui MEIFeng GAO . Preparation of La-doped lead-based piezoelectric ceramics with both high electrical strain and Curie temperature. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 329-338. doi: 10.11862/CJIC.20240206

    20. [20]

      Yongqing Kuang Jie Liu Jianjun Feng Wen Yang Shuanglian Cai Ling Shi . Experimental Design for the Two-Step Synthesis of Paracetamol from 4-Hydroxyacetophenone. University Chemistry, 2024, 39(8): 331-337. doi: 10.12461/PKU.DXHX202403012

Metrics
  • PDF Downloads(1051)
  • Abstract views(890)
  • HTML views(18)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return