Citation: LI Jia, XU Wen-Li, HU Jing, LING Min, YAO Jian-Hua. Hydrolysis Reaction Mechanismof 2, 4-Dichlorophenoxy Acetic Acid Metabolism[J]. Acta Physico-Chimica Sinica, ;2013, 29(09): 1923-1930. doi: 10.3866/PKU.WHXB201306281 shu

Hydrolysis Reaction Mechanismof 2, 4-Dichlorophenoxy Acetic Acid Metabolism

  • Received Date: 6 February 2013
    Available Online: 28 June 2013

    Fund Project: 国家自然科学基金项目(21072216) (21072216)支撑项目(2011BAE06B05) (2011BAE06B05)国家重点基础研究发展规划项目(973)(2010CB126103)资助 (973)(2010CB126103)

  • 2,4-Dichlorophenoxy acetic acid (2,4-D) is a herbicide and plant growth regulator that is widely applied inagriculture.Many chemical reactions takeplace inthemetabolismof 2,4-D. Herein, the hydrolysis reaction mechanismin 2,4-D metabolismwill be presented. In this study, a density functional theory approach, B3LYP, was employed toinvestigatethehydrolysis reaction mechanismalong three different paths. The computed results indicate that: (Ⅰ) there are two models of the hydrolysis reaction of 2,4-D. The dissociation mechanismof C(1)―O and C―Cl involve hydrogen transfer and Cl substitution, respectively. (Ⅱ) The energy barrier of C―Cl dissociation was lower and the dissociation showed advantageous dynamics. Two of the reaction paths that initiate the dissociation of C―Cl were primary reactions. The dissociation of C(1)―O was the last step in the primary reactions and had a higher energy barrier. In metabolism, the different intermediates have different concentrations, and this impacts on the reaction rate. (Ⅲ) In addition, it was necessary to consider the solvent effect to investigate the hydrolysis reaction. To characterize the solvent effect, the conductor-like polarizable continuum model (CPCM) was used to simulate the hydrolysis reaction with respect to the bond length and energy barrier.

  • 加载中
    1. [1]

      (1) Zeljezic, D.; Garaj-Vrhovac, V. Toxicology 2004, 200 (1), 39.doi: 10.1016/j.tox.2004.03.002

    2. [2]

      (2) Lerch, T. Z.; Dignac, M. F.; Barriuso, E.; Bardoux, G.; Mariotti,A. J. Microbiol. Meth. 2007, 71, 162. doi: 10.1016/j.mimet.2007.08.003

    3. [3]

      (3) e-Pesticide Manual V4.2, version 4.2, copyright BCPC, 2008-2009, Publisher BCPC.

    4. [4]

      (4) Colborn, E.; VomSaal, F. S.; Soto, A. M. Environmental Impact Assessment Review 1993, 14, 469.

    5. [5]

      (5) Zeep, R. G.; Wolfe, N. L.; rdon, J. A.; Baughman, G. L.Environ. Sci. Technol. 1975, 9, 1144. doi: 10.1021/es60111a001

    6. [6]

      (6) Hoover, D. G.; Bor nov, G. E.; Jones, S. H. Appl. Environ. Microb. 1986, 51, 226.

    7. [7]

      (7) Luna, A. J.; Chiavone-Filho, O.; Machulek, A.; de Moraes, J. E.F.; Nascimento, C. A. O. J. Environ. Manage. 2012, 111, 10.doi: 10.1016/j.jenvman.2012.06.014

    8. [8]

      (8) Cabrera, M. I.; Martin, C. A.; Alfano, O. M. Water Sci. Technol.1997, 35 (4), 31.

    9. [9]

      (9) Lee, Y.; Lee, C.; Yoon, J. Chemosphere 2003, 51, 963. doi: 10.1016/S0045-6535(03)00043-2

    10. [10]

      (10) Wang, Q.; Lemley, A. T. Environ. Sci. Technol. 2001, 35, 4509.doi: 10.1021/es0109693

    11. [11]

      (11) Rivera-Utrilla, J.; Sánchez-Polo, M.; Abdel daiem, M. M.;Ocampo-Pérez, R. Appl. Catal. B-Environ. 2012, 126, 100. doi: 10.1016/j.apcatb.2012.07.015

    12. [12]

      (12) Seck, E. I.; Dona-Rodríguez, J. M.; Fernández-Rodriguez, C.; nzález-Díaz, O. M.; Arana, J.; Pérez-Pena, J. Appl. Catal. BEnviron.2012, 125, 28. doi: 10.1016/j.apcatb.2012.05.028

    13. [13]

      (13) Laurent, F.; Debrauwer, L.; Rathahao, E.; Scalla, R. J. Agric. Food Chem. 2000, 48 (11), 5307. doi: 10.1021/jf990672c

    14. [14]

      (14) Niedrée, B.; Vereecken, H.; Burauel, P. J. Environ. Radioactiv.2013, 115, 168. doi: 10.1016/j.jenvrad.2012.08.008

    15. [15]

      (15) Fontmorin, J. M.; Huguet, S.; Fourcade, F.; Geneste, F.; Floner,D.; Amrane, A. Chem. Eng. J. 2012, 195, 208.

    16. [16]

      (16) Tiedje, J. M.; Duxbury, J. M.; Alexander, M.; Dawson, J. E.J. Agric. Food Chem. 1969, 17 (5), 1021. doi: 10.1021/jf60165a037

    17. [17]

      (17) Hagin, R. D.; Linscott, D. L.; Dawson, J. E. J. Agric. Food Chem. 1970, 18 (5), 848. doi: 10.1021/jf60171a030

    18. [18]

      (18) Hamilton, R. H.; Hurter, J.; Hall, J. K.; Erce vich, C. D.J. Agric. Food Chem. 1971, 19 (3), 480. doi: 10.1021/jf60175a031

    19. [19]

      (19) Crosby, D. G.; Tutass, H. O. J. Agric. Food Chem. 1966, 14 (6),596. doi: 10.1021/jf60148a012

    20. [20]

      (20) Linscott, D. L.; Hagin, R. D.; Dawson, J. E. J. Agric. Food Chem. 1968, 16 (5), 844. doi: 10.1021/jf60159a035

    21. [21]

      (21) Feung, C. S.; Hamilton, R. H.; Mumma, R. O. J. Agric. Food Chem. 1973, 21 (4), 637. doi: 10.1021/jf60188a058

    22. [22]

      (22) Roberts, T. R. Metabolic Pathways of Agrochemicals; TheRoyal Society of Chemistry: Cambridge, UK, 1998; pp 66-74.

    23. [23]

      (23) Barone, V.; Cossi, M. J. Phys. Chem. 1998, 102 (11), 1995. doi: 10.1021/jp9716997

    24. [24]

      (24) Frisch, M. J.; Trucks, G. W.; Schlegel, H. B.; et al. Gaussian 09,Revision A.02; Gaussian Inc.: Pittsburgh, PA, 2009.

    25. [25]

      (25) Perdew, J. P. Phys. Rev. B 1986, 33, 8800. doi: 10.1103/PhysRevB.33.8800

    26. [26]

      (26) Lee, C.; Yang, W.; Parr, R. G. Phys. Rev. B 1988, 37, 785. doi: 10.1103/PhysRevB.37.785

    27. [27]

      (27) Ditchfield, R.; Hehre, W. J.; Pople, J. A. J. Chem. Phys. 1971,54, 724. doi: 10.1063/1.1674902

    28. [28]

      (28) Deng, L.; Ziegler, T.; Fan, L. J. J. Chem. Phys. 1993, 99, 3823.doi: 10.1063/1.466129

    29. [29]

      (29) Reed, A. E.; Curtiss, L. A.; Weinhold, F. Chem. Rev. 1988, 88,899. doi: 10.1021/cr00088a005

    30. [30]

      (30) Jia, X. J.; Pan, X. M.; Wang, L. W.; Liu, Y.; Sun, H.; Su, Z. M.;Wang, R. S. Chem. J. Chin. Univ. 2008, 29, 1224. [贾秀娟,潘秀梅, 王莉伟,刘颖,孙昊,苏忠民, 王荣顺.高等学校化学学报, 2008, 29, 1124.]

    31. [31]

      (31) Yi, G. Q.; Zeng, Y.; Xia, X. F. Chem. Phys. 2008, 345 (1), 73.doi: 10.1016/j.chemphys.2008.01.036


  • 加载中
    1. [1]

      Hao XURuopeng LIPeixia YANGAnmin LIUJie BAI . Regulation mechanism of halogen axial coordination atoms on the oxygen reduction activity of Fe-N4 site: A density functional theory study. Chinese Journal of Inorganic Chemistry, 2025, 41(4): 695-701. doi: 10.11862/CJIC.20240302

    2. [2]

      Jie ZHAOSen LIUQikang YINXiaoqing LUZhaojie WANG . Theoretical calculation of selective adsorption and separation of CO2 by alkali metal modified naphthalene/naphthalenediyne. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 515-522. doi: 10.11862/CJIC.20230385

    3. [3]

      Jie ZHAOHuili ZHANGXiaoqing LUZhaojie WANG . Theoretical calculations of CO2 capture and separation by functional groups modified 2D covalent organic framework. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 275-283. doi: 10.11862/CJIC.20240213

    4. [4]

      Jia Zhou . Constructing Potential Energy Surface of Water Molecule by Quantum Chemistry and Machine Learning: Introduction to a Comprehensive Computational Chemistry Experiment. University Chemistry, 2024, 39(3): 351-358. doi: 10.3866/PKU.DXHX202309060

    5. [5]

      Hongting Yan Aili Feng Rongxiu Zhu Lei Liu Dongju Zhang . Reexamination of the Iodine-Catalyzed Chlorination Reaction of Chlorobenzene Using Computational Chemistry Methods. University Chemistry, 2025, 40(3): 16-22. doi: 10.12461/PKU.DXHX202403010

    6. [6]

      Weina Wang Lixia Feng Fengyi Liu Wenliang Wang . Computational Chemistry Experiments in Facilitating the Study of Organic Reaction Mechanism: A Case Study of Electrophilic Addition of HCl to Asymmetric Alkenes. University Chemistry, 2025, 40(3): 206-214. doi: 10.12461/PKU.DXHX202407022

    7. [7]

      Peng YUELiyao SHIJinglei CUIHuirong ZHANGYanxia GUO . Effects of Ce and Mn promoters on the selective oxidation of ammonia over V2O5/TiO2 catalyst. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 293-307. doi: 10.11862/CJIC.20240210

    8. [8]

      Ronghao Zhao Yifan Liang Mengyao Shi Rongxiu Zhu Dongju Zhang . Investigation into the Mechanism and Migratory Aptitude of Typical Pinacol Rearrangement Reactions: A Research-Oriented Computational Chemistry Experiment. University Chemistry, 2024, 39(4): 305-313. doi: 10.3866/PKU.DXHX202309101

    9. [9]

      Kaifu Zhang Shan Gao Bin Yang . Application of Theoretical Calculation with Fun Practice in Raman Spectroscopy Experimental Teaching. University Chemistry, 2025, 40(3): 62-67. doi: 10.12461/PKU.DXHX202404045

    10. [10]

      Wentao Lin Wenfeng Wang Yaofeng Yuan Chunfa Xu . Concerted Nucleophilic Aromatic Substitution Reactions. University Chemistry, 2024, 39(6): 226-230. doi: 10.3866/PKU.DXHX202310095

    11. [11]

      Aili Feng Xin Lu Peng Liu Dongju Zhang . Computational Chemistry Study of Acid-Catalyzed Esterification Reactions between Carboxylic Acids and Alcohols. University Chemistry, 2025, 40(3): 92-99. doi: 10.12461/PKU.DXHX202405072

    12. [12]

      Ling Fan Meili Pang Yeyun Zhang Yanmei Wang Zhenfeng Shang . Quantum Chemistry Calculation Research on the Diels-Alder Reaction of Anthracene and Maleic Anhydride: Introduction to a Computational Chemistry Experiment. University Chemistry, 2024, 39(4): 133-139. doi: 10.3866/PKU.DXHX202309024

    13. [13]

      Jiabo Huang Quanxin Li Zhongyan Cao Li Dang Shaofei Ni . Elucidating the Mechanism of Beckmann Rearrangement Reaction Using Quantum Chemical Calculations. University Chemistry, 2025, 40(3): 153-159. doi: 10.12461/PKU.DXHX202405172

    14. [14]

      Xiaochen Zhang Fei Yu Jie Ma . 多角度数理模拟在电容去离子中的前沿应用. Acta Physico-Chimica Sinica, 2024, 40(11): 2311026-. doi: 10.3866/PKU.WHXB202311026

    15. [15]

      Qian Huang Zhaowei Li Jianing Zhao Ao Yu . Quantum Chemical Calculations Reveal the Details Below the Experimental Phenomenon. University Chemistry, 2024, 39(3): 395-400. doi: 10.3866/PKU.DXHX202309018

    16. [16]

      Yong Wang Yingying Zhao Boshun Wan . Analysis of Organic Questions in the 37th Chinese Chemistry Olympiad (Preliminary). University Chemistry, 2024, 39(11): 406-416. doi: 10.12461/PKU.DXHX202403009

    17. [17]

      Mingyang Men Jinghua Wu Gaozhan Liu Jing Zhang Nini Zhang Xiayin Yao . 液相法制备硫化物固体电解质及其在全固态锂电池中的应用. Acta Physico-Chimica Sinica, 2025, 41(1): 2309019-. doi: 10.3866/PKU.WHXB202309019

    18. [18]

      Zihan Lin Wanzhen Lin Fa-Jie Chen . Electrochemical Modifications of Native Peptides. University Chemistry, 2025, 40(3): 318-327. doi: 10.12461/PKU.DXHX202406089

    19. [19]

      Meifeng Zhu Jin Cheng Kai Huang Cheng Lian Shouhong Xu Honglai Liu . Classical Density Functional Theory for Understanding Electrochemical Interface. University Chemistry, 2025, 40(3): 148-152. doi: 10.12461/PKU.DXHX202405166

    20. [20]

      Yanglin Jiang Mingqing Chen Min Liang Yige Yao Yan Zhang Peng Wang Jianping Zhang . Experimental and Theoretical Investigations of Solvent Polarity Effect on ESIPT Mechanism in 4′-N,N-diethylamino-3-hydroxybenzoflavone. Acta Physico-Chimica Sinica, 2025, 41(2): 100012-. doi: 10.3866/PKU.WHXB202309027

Metrics
  • PDF Downloads(789)
  • Abstract views(1555)
  • HTML views(14)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return