Citation: LI Jia, XU Wen-Li, HU Jing, LING Min, YAO Jian-Hua. Hydrolysis Reaction Mechanismof 2, 4-Dichlorophenoxy Acetic Acid Metabolism[J]. Acta Physico-Chimica Sinica, ;2013, 29(09): 1923-1930. doi: 10.3866/PKU.WHXB201306281 shu

Hydrolysis Reaction Mechanismof 2, 4-Dichlorophenoxy Acetic Acid Metabolism

  • Received Date: 6 February 2013
    Available Online: 28 June 2013

    Fund Project: 国家自然科学基金项目(21072216) (21072216)支撑项目(2011BAE06B05) (2011BAE06B05)国家重点基础研究发展规划项目(973)(2010CB126103)资助 (973)(2010CB126103)

  • 2,4-Dichlorophenoxy acetic acid (2,4-D) is a herbicide and plant growth regulator that is widely applied inagriculture.Many chemical reactions takeplace inthemetabolismof 2,4-D. Herein, the hydrolysis reaction mechanismin 2,4-D metabolismwill be presented. In this study, a density functional theory approach, B3LYP, was employed toinvestigatethehydrolysis reaction mechanismalong three different paths. The computed results indicate that: (Ⅰ) there are two models of the hydrolysis reaction of 2,4-D. The dissociation mechanismof C(1)―O and C―Cl involve hydrogen transfer and Cl substitution, respectively. (Ⅱ) The energy barrier of C―Cl dissociation was lower and the dissociation showed advantageous dynamics. Two of the reaction paths that initiate the dissociation of C―Cl were primary reactions. The dissociation of C(1)―O was the last step in the primary reactions and had a higher energy barrier. In metabolism, the different intermediates have different concentrations, and this impacts on the reaction rate. (Ⅲ) In addition, it was necessary to consider the solvent effect to investigate the hydrolysis reaction. To characterize the solvent effect, the conductor-like polarizable continuum model (CPCM) was used to simulate the hydrolysis reaction with respect to the bond length and energy barrier.

  • 加载中
    1. [1]

      (1) Zeljezic, D.; Garaj-Vrhovac, V. Toxicology 2004, 200 (1), 39.doi: 10.1016/j.tox.2004.03.002

    2. [2]

      (2) Lerch, T. Z.; Dignac, M. F.; Barriuso, E.; Bardoux, G.; Mariotti,A. J. Microbiol. Meth. 2007, 71, 162. doi: 10.1016/j.mimet.2007.08.003

    3. [3]

      (3) e-Pesticide Manual V4.2, version 4.2, copyright BCPC, 2008-2009, Publisher BCPC.

    4. [4]

      (4) Colborn, E.; VomSaal, F. S.; Soto, A. M. Environmental Impact Assessment Review 1993, 14, 469.

    5. [5]

      (5) Zeep, R. G.; Wolfe, N. L.; rdon, J. A.; Baughman, G. L.Environ. Sci. Technol. 1975, 9, 1144. doi: 10.1021/es60111a001

    6. [6]

      (6) Hoover, D. G.; Bor nov, G. E.; Jones, S. H. Appl. Environ. Microb. 1986, 51, 226.

    7. [7]

      (7) Luna, A. J.; Chiavone-Filho, O.; Machulek, A.; de Moraes, J. E.F.; Nascimento, C. A. O. J. Environ. Manage. 2012, 111, 10.doi: 10.1016/j.jenvman.2012.06.014

    8. [8]

      (8) Cabrera, M. I.; Martin, C. A.; Alfano, O. M. Water Sci. Technol.1997, 35 (4), 31.

    9. [9]

      (9) Lee, Y.; Lee, C.; Yoon, J. Chemosphere 2003, 51, 963. doi: 10.1016/S0045-6535(03)00043-2

    10. [10]

      (10) Wang, Q.; Lemley, A. T. Environ. Sci. Technol. 2001, 35, 4509.doi: 10.1021/es0109693

    11. [11]

      (11) Rivera-Utrilla, J.; Sánchez-Polo, M.; Abdel daiem, M. M.;Ocampo-Pérez, R. Appl. Catal. B-Environ. 2012, 126, 100. doi: 10.1016/j.apcatb.2012.07.015

    12. [12]

      (12) Seck, E. I.; Dona-Rodríguez, J. M.; Fernández-Rodriguez, C.; nzález-Díaz, O. M.; Arana, J.; Pérez-Pena, J. Appl. Catal. BEnviron.2012, 125, 28. doi: 10.1016/j.apcatb.2012.05.028

    13. [13]

      (13) Laurent, F.; Debrauwer, L.; Rathahao, E.; Scalla, R. J. Agric. Food Chem. 2000, 48 (11), 5307. doi: 10.1021/jf990672c

    14. [14]

      (14) Niedrée, B.; Vereecken, H.; Burauel, P. J. Environ. Radioactiv.2013, 115, 168. doi: 10.1016/j.jenvrad.2012.08.008

    15. [15]

      (15) Fontmorin, J. M.; Huguet, S.; Fourcade, F.; Geneste, F.; Floner,D.; Amrane, A. Chem. Eng. J. 2012, 195, 208.

    16. [16]

      (16) Tiedje, J. M.; Duxbury, J. M.; Alexander, M.; Dawson, J. E.J. Agric. Food Chem. 1969, 17 (5), 1021. doi: 10.1021/jf60165a037

    17. [17]

      (17) Hagin, R. D.; Linscott, D. L.; Dawson, J. E. J. Agric. Food Chem. 1970, 18 (5), 848. doi: 10.1021/jf60171a030

    18. [18]

      (18) Hamilton, R. H.; Hurter, J.; Hall, J. K.; Erce vich, C. D.J. Agric. Food Chem. 1971, 19 (3), 480. doi: 10.1021/jf60175a031

    19. [19]

      (19) Crosby, D. G.; Tutass, H. O. J. Agric. Food Chem. 1966, 14 (6),596. doi: 10.1021/jf60148a012

    20. [20]

      (20) Linscott, D. L.; Hagin, R. D.; Dawson, J. E. J. Agric. Food Chem. 1968, 16 (5), 844. doi: 10.1021/jf60159a035

    21. [21]

      (21) Feung, C. S.; Hamilton, R. H.; Mumma, R. O. J. Agric. Food Chem. 1973, 21 (4), 637. doi: 10.1021/jf60188a058

    22. [22]

      (22) Roberts, T. R. Metabolic Pathways of Agrochemicals; TheRoyal Society of Chemistry: Cambridge, UK, 1998; pp 66-74.

    23. [23]

      (23) Barone, V.; Cossi, M. J. Phys. Chem. 1998, 102 (11), 1995. doi: 10.1021/jp9716997

    24. [24]

      (24) Frisch, M. J.; Trucks, G. W.; Schlegel, H. B.; et al. Gaussian 09,Revision A.02; Gaussian Inc.: Pittsburgh, PA, 2009.

    25. [25]

      (25) Perdew, J. P. Phys. Rev. B 1986, 33, 8800. doi: 10.1103/PhysRevB.33.8800

    26. [26]

      (26) Lee, C.; Yang, W.; Parr, R. G. Phys. Rev. B 1988, 37, 785. doi: 10.1103/PhysRevB.37.785

    27. [27]

      (27) Ditchfield, R.; Hehre, W. J.; Pople, J. A. J. Chem. Phys. 1971,54, 724. doi: 10.1063/1.1674902

    28. [28]

      (28) Deng, L.; Ziegler, T.; Fan, L. J. J. Chem. Phys. 1993, 99, 3823.doi: 10.1063/1.466129

    29. [29]

      (29) Reed, A. E.; Curtiss, L. A.; Weinhold, F. Chem. Rev. 1988, 88,899. doi: 10.1021/cr00088a005

    30. [30]

      (30) Jia, X. J.; Pan, X. M.; Wang, L. W.; Liu, Y.; Sun, H.; Su, Z. M.;Wang, R. S. Chem. J. Chin. Univ. 2008, 29, 1224. [贾秀娟,潘秀梅, 王莉伟,刘颖,孙昊,苏忠民, 王荣顺.高等学校化学学报, 2008, 29, 1124.]

    31. [31]

      (31) Yi, G. Q.; Zeng, Y.; Xia, X. F. Chem. Phys. 2008, 345 (1), 73.doi: 10.1016/j.chemphys.2008.01.036


  • 加载中
    1. [1]

      Jie ZHAOSen LIUQikang YINXiaoqing LUZhaojie WANG . Theoretical calculation of selective adsorption and separation of CO2 by alkali metal modified naphthalene/naphthalenediyne. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 515-522. doi: 10.11862/CJIC.20230385

    2. [2]

      Jia Zhou . Constructing Potential Energy Surface of Water Molecule by Quantum Chemistry and Machine Learning: Introduction to a Comprehensive Computational Chemistry Experiment. University Chemistry, 2024, 39(3): 351-358. doi: 10.3866/PKU.DXHX202309060

    3. [3]

      Ronghao Zhao Yifan Liang Mengyao Shi Rongxiu Zhu Dongju Zhang . Investigation into the Mechanism and Migratory Aptitude of Typical Pinacol Rearrangement Reactions: A Research-Oriented Computational Chemistry Experiment. University Chemistry, 2024, 39(4): 305-313. doi: 10.3866/PKU.DXHX202309101

    4. [4]

      Wentao Lin Wenfeng Wang Yaofeng Yuan Chunfa Xu . Concerted Nucleophilic Aromatic Substitution Reactions. University Chemistry, 2024, 39(6): 226-230. doi: 10.3866/PKU.DXHX202310095

    5. [5]

      Ling Fan Meili Pang Yeyun Zhang Yanmei Wang Zhenfeng Shang . Quantum Chemistry Calculation Research on the Diels-Alder Reaction of Anthracene and Maleic Anhydride: Introduction to a Computational Chemistry Experiment. University Chemistry, 2024, 39(4): 133-139. doi: 10.3866/PKU.DXHX202309024

    6. [6]

      Xiaochen Zhang Fei Yu Jie Ma . 多角度数理模拟在电容去离子中的前沿应用. Acta Physico-Chimica Sinica, 2024, 40(11): 2311026-. doi: 10.3866/PKU.WHXB202311026

    7. [7]

      Qian Huang Zhaowei Li Jianing Zhao Ao Yu . Quantum Chemical Calculations Reveal the Details Below the Experimental Phenomenon. University Chemistry, 2024, 39(3): 395-400. doi: 10.3866/PKU.DXHX202309018

    8. [8]

      Yong Wang Yingying Zhao Boshun Wan . Analysis of Organic Questions in the 37th Chinese Chemistry Olympiad (Preliminary). University Chemistry, 2024, 39(11): 406-416. doi: 10.12461/PKU.DXHX202403009

    9. [9]

      Tianlong Zhang Rongling Zhang Hongsheng Tang Yan Li Hua Li . Online Monitoring and Mechanistic Analysis of 3,5-diamino-1,2,4-triazole (DAT) Synthesis via Raman Spectroscopy: A Recommendation for a Comprehensive Instrumental Analysis Experiment. University Chemistry, 2024, 39(6): 303-311. doi: 10.3866/PKU.DXHX202312006

    10. [10]

      Maitri BhattacharjeeRekha Boruah SmritiR. N. Dutta PurkayasthaWaldemar ManiukiewiczShubhamoy ChowdhuryDebasish MaitiTamanna Akhtar . Synthesis, structural characterization, bio-activity, and density functional theory calculation on Cu(Ⅱ) complexes with hydrazone-based Schiff base ligands. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1409-1422. doi: 10.11862/CJIC.20240007

    11. [11]

      Yingchun ZHANGYiwei SHIRuijie YANGXin WANGZhiguo SONGMin WANG . Dual ligands manganese complexes based on benzene sulfonic acid and 2, 2′-bipyridine: Structure and catalytic properties and mechanism in Mannich reaction. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1501-1510. doi: 10.11862/CJIC.20240078

    12. [12]

      Heng Zhang . Determination of All Rate Constants in the Enzyme Catalyzed Reactions Based on Michaelis-Menten Mechanism. University Chemistry, 2024, 39(4): 395-400. doi: 10.3866/PKU.DXHX202310047

    13. [13]

      Shiyan Cheng Yonghong Ruan Lei Gong Yumei Lin . Research Advances in Friedel-Crafts Alkylation Reaction. University Chemistry, 2024, 39(10): 408-415. doi: 10.12461/PKU.DXHX202403024

    14. [14]

      Yukun Chang Haoqin Huang Baolei Wang . Preparation of Trans-Cinnamic Acid via “One-Pot” Protocol of Aldol Condensation-Hydrolysis Reaction: Recommending an Improved Organic Synthesis Experiment. University Chemistry, 2024, 39(4): 322-328. doi: 10.3866/PKU.DXHX202309095

    15. [15]

      Yaling Chen . Basic Theory and Competitive Exam Analysis of Dynamic Isotope Effect. University Chemistry, 2024, 39(8): 403-410. doi: 10.3866/PKU.DXHX202311093

    16. [16]

      Ruitong Zhang Zhiqiang Zeng Xiaoguang Zhang . Improvement of Ethyl Acetate Saponification Reaction and Iodine Clock Reaction Experiments. University Chemistry, 2024, 39(8): 197-203. doi: 10.3866/PKU.DXHX202312004

    17. [17]

      Jinyao Du Xingchao Zang Ningning Xu Yongjun Liu Weisi Guo . Electrochemical Thiocyanation of 4-Bromoethylbenzene. University Chemistry, 2024, 39(6): 312-317. doi: 10.3866/PKU.DXHX202310039

    18. [18]

      Yuejiao An Wenxuan Liu Yanfeng Zhang Jianjun Zhang Zhansheng Lu . Revealing Photoinduced Charge Transfer Mechanism of SnO2/BiOBr S-Scheme Heterostructure for CO2 Photoreduction. Acta Physico-Chimica Sinica, 2024, 40(12): 2407021-. doi: 10.3866/PKU.WHXB202407021

    19. [19]

      Endong YANGHaoze TIANKe ZHANGYongbing LOU . Efficient oxygen evolution reaction of CuCo2O4/NiFe-layered bimetallic hydroxide core-shell nanoflower sphere arrays. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 930-940. doi: 10.11862/CJIC.20230369

    20. [20]

      Shuying Zhu Shuting Wu Ou Zheng . Improvement and Expansion of the Experiment for Determining the Rate Constant of the Saponification Reaction of Ethyl Acetate. University Chemistry, 2024, 39(4): 107-113. doi: 10.3866/PKU.DXHX202310117

Metrics
  • PDF Downloads(789)
  • Abstract views(1509)
  • HTML views(12)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return