Citation: YANG Zhi-Xiong, YANG Jin-Xin, LIU Qi, XIE Yu-Xing, XIONG Xiang, OUYANG Fang-Ping. Electronic Structure and Edge Modification of Armchair MoS2 Nanoribbons[J]. Acta Physico-Chimica Sinica, ;2013, 29(08): 1648-1654. doi: 10.3866/PKU.WHXB201305211 shu

Electronic Structure and Edge Modification of Armchair MoS2 Nanoribbons

  • Received Date: 2 January 2013
    Available Online: 21 May 2013

    Fund Project: 国家自然科学基金(51272291) (51272291) 湖南省自然科学基金(11JJ4001) (11JJ4001) 中国博士后科学基金(2012M511399) (2012M511399) 湖南省科技计划( 2012RS4009) ( 2012RS4009)中南大学博士后科学基金(201202025)资助项目 (201202025)

  • The geometries and electronic properties of armchair MoS2 nanoribbons were investigated by the first-principles method based on density functional theory. It was found that the stability and electronic properties of armchair MoS2 nanoribbons sensitively depend on edge modification. Increasing the number of hydrogen atoms on the edge caused the nanoribbons to become more stable and transition between indirect-gap semiconductor, semi-metal and direct-gap semiconductor. The band structure and densities of states of the nanoribbons indicated that low energy bands contributed to edge states. Different hydrogen adsorption patterns on each edge induce two kinds of edge state on the nanoribbons and these two kinds of edge state have little effect on each other. The relationships between the bandgap and width of three types of nanoribbons were studied. Nanoribbons terminated with zero or eight hydrogen atoms in each unit cell have a bandgap that oscillates with width in a period of three, while the bandgap changes nonperiodically in those terminated with four hydrogen atoms.

  • 加载中
    1. [1]

      (1) Alexiev, V.; Prins, R.;Weber, T. Physical Chemistry Chemical Physics 2000, 2 (8), 1815. doi: 10.1039/a909293e

    2. [2]

      (2) Tenne, R.; Redlich, M. Chem. Soc. Rev. 2010, 39 (5), 1423. doi: 10.1039/b901466g

    3. [3]

      (3) Feldman, Y.; Frey, G. L.; Homyonfer, M.; Lyakhovitskaya, V.;Margulis, L.; Cohen, H.; Hodes, G.; Hutchison, J. L.; Tenne, R.J. Am. Chem. Soc. 1996, 118 (23), 5362. doi: 10.1021/ja9602408

    4. [4]

      (4) Hershfinkel, M.; Gheber, L. A.; Volterra, V.; Hutchison, J. L.;Margulis, L.; Tenne, R. J. Am. Chem. Soc. 1994, 116 (5), 1914.doi: 10.1021/ja00084a035

    5. [5]

      (5) Novoselov, K. S.; Geim, A. K.; Morozov, S. V.; Jiang, D.;Zhang, Y.; Dubonos, S. V.; Gri rieva, I. V.; Firsov, A. A.Science 2004, 306 (5696), 666. doi: 10.1126/science.1102896

    6. [6]

      (6) Castellanos- mez, A.; Barkelid, M.; ossens, A. M.; Calado,V. E.; van der Zant, H. S.; Steele, G. A. Nano Lett. 2012, 12 (6),3187. doi: 10.1021/nl301164v

    7. [7]

      (7) Rao, C. N. R.; Nag, A. Eur. J. Inorg. Chem. 2010, 2010 (27),4244.

    8. [8]

      (8) Mak, K. F.; Lee, C.; Hone, J.; Shan, J.; Heinz, T. F. Phys. Rev. Lett. 2010, 105 (13), 136805. doi: 10.1103/PhysRevLett.105.136805

    9. [9]

      (9) Kumar, A.; Ahluwalia, P. K. Eur. Phys. J. B 2012, 85 (6), 186.doi: 10.1140/epjb/e2012-30070-x

    10. [10]

      (10) Yun,W. S.; Han, S.W.; Hong, S. C.; Kim, I. G.; Lee, J. D. Phys. Rev. B 2012, 85, 033305. doi: 10.1103/PhysRevB.85.033305

    11. [11]

      (11) Radisavljevic, B.; Whitwick, M. B.; Kis, A. ACS Nano 2011, 5 (12), 9934. doi: 10.1021/nn203715c

    12. [12]

      (12) Radisavljevic, B.; Radenovic, A.; Brivio, J.; Giacometti, V.; Kis,A. Nat. Nanotechnol. 2011, 6 (3), 147. doi: 10.1038/nnano.2010.279

    13. [13]

      (13) Chang, K.; Chen,W.; Ma, L.; Li, H.; Li, H.; Huang, F.; Xu, Z.;Zhang, Q.; Lee, J. Y. J. Mater. Chem. 2011, 21 (17), 6251. doi: 10.1039/c1jm10174a

    14. [14]

      (14) Chang, K.; Chen,W. J. Mater. Chem. 2011, 21 (43), 17175. doi: 10.1039/c1jm12942b

    15. [15]

      (15) Zeng, Z.; Yin, Z.; Huang, X.; Li, H.; He, Q.; Lu, G.; Boey, F.;Zhang, H. Angew. Chem. Int. Edit. 2011, 50 (47), 11093. doi: 10.1002/anie.v50.47

    16. [16]

      (16) Yin, Z.; Li, H.; Li, H.; Jiang, L.; Shi, Y.; Sun, Y.; Lu, G.; Zhang,Q.; Chen, X.; Zhang, H. ACS Nano 2011, 6 (1), 74.

    17. [17]

      (17) Wu, M.;Wang, Y.; Lin, X.; Yu, N.;Wang, L.; Hagfeldt, A.; Ma,T. Physical Chemistry Chemical Physics 2011, 13 (43), 19298.doi: 10.1039/c1cp22819f

    18. [18]

      (18) Yang, S. Q.; Li, D. X.; Zhang, T. R.; Tao, Z. L.; Chen, J. J. Phys. Chem. C 2012, 116 (1), 1307. doi: 10.1021/jp2097026

    19. [19]

      (19) Dolui, K.; Das Pemmaraju, C.; Sanvito, S. ACS Nano 2012, 6 (6), 4823. doi: 10.1021/nn301505x

    20. [20]

      (20) Ataca, C.; Sahin, H.; Akturk, E.; Ciraci, S. J. Phys. Chem. C2011, 115 (10), 3934. doi: 10.1021/jp1115146

    21. [21]

      (21) Yue, Q.; Chang, S.; Kang, J.; Zhang, X.; Shao, Z.; Qin, S.; Li, J.J. Phys. Condes. Matter 2012, 24 (33), 335501. doi: 10.1088/0953-8984/24/33/335501

    22. [22]

      (22) Erdogan, E.; Popov, I. H.; Enyashin, A. N.; Seifert, G. Eur. Phys. J. B 2012, 85 (1), 33. doi: 10.1140/epjb/e2011-20456-7

    23. [23]

      (23) Shidpour, R.; Manteghian, M. Nanoscale 2010, 2 (8), 1429. doi: 10.1039/b9nr00368a

    24. [24]

      (24) Pan, H.; Zhang, Y.W. J. Mater. Chem. 2012, 22 (15), 7280. doi: 10.1039/c2jm15906f

    25. [25]

      (25) Li, Y. F.; Zhou, Z.; Zhang, S. B.; Chen, Z. F. J. Am. Chem. Soc.2008, 130 (49), 16739. doi: 10.1021/ja805545x

    26. [26]

      (26) Wen, X. D.; Zeng, T.; Teng, B. T.; Zhang, F. Q.; Li, Y.W.;Wang, H. G.; Jiao, H. J. J. Mol. Catal. A-Chem. 2006, 249 (1-2), 191. doi: 10.1016/j.molcata.2006.01.018

    27. [27]

      (27) Perdew, J. P.; Burke, K.; Ernzerhof, M. Phys. Rev. Lett. 1996, 77 (18), 3865. doi: 10.1103/PhysRevLett.77.3865

    28. [28]

      (28) Perdew, J. P.; Burke, K.; Ernzerhof, M. Phys. Rev. Lett. 1997, 78 (7), 1396.

    29. [29]

      (29) Troullier, N.; Martins, J. Solid State Commun. 1990, 74 (7), 613.doi: 10.1016/0038-1098(90)90686-6

    30. [30]

      (30) Wu, M. S.; Xu, B.; Liu, G.; Ouyang, C. Y. Acta Phys. Sin. 2012,61, 227102. [吴木生, 徐波, 刘刚, 欧阳楚英. 物理学报,2012, 61, 227102.] doi: 10.7498/aps.61.227102

    31. [31]

      (31) Oviedo-Roa, R.; Martinez-Magadan, J. M.; Illas, F. J. Phys. Chem. B 2006, 110 (15), 7951. doi: 10.1021/jp052299j

    32. [32]

      (32) Ouyang, F. P.; Xu, H.;Wei, C. Acta Phys. Sin. 2008, 57, 1073.[欧阳方平, 徐慧, 魏辰. 物理学报, 2008, 57, 1073.]

    33. [33]

      (33) Chiu, C. H.; Chu, C. S. Phys. Rev. B 2012, 85 (15), 155444. doi: 10.1103/PhysRevB.85.155444

    34. [34]

      (34) Enoki, T. Epj. Web. Conf. 2012, 23, 00017. doi: 10.1051/epjconf/20122300017

    35. [35]

      (35) Barone, V.; Hod, O.; Scuseria, G. E. Nano Lett. 2006, 6 (12),2748. doi: 10.1021/nl0617033


  • 加载中
    1. [1]

      Xin XIONGQian CHENQuan XIE . First principles study of the photoelectric properties and magnetism of La and Yb doped AlN. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1519-1527. doi: 10.11862/CJIC.20240064

    2. [2]

      Cheng PENGJianwei WEIYating CHENNan HUHui ZENG . First principles investigation about interference effects of electronic and optical properties of inorganic and lead-free perovskite Cs3Bi2X9 (X=Cl, Br, I). Chinese Journal of Inorganic Chemistry, 2024, 40(3): 555-560. doi: 10.11862/CJIC.20230282

    3. [3]

      Zhenming Xu Mingbo Zheng Zhenhui Liu Duo Chen Qingsheng Liu . Experimental Design of Project-Driven Teaching in Computational Materials Science: First-Principles Calculations of the LiFePO4 Cathode Material for Lithium-Ion Batteries. University Chemistry, 2024, 39(4): 140-148. doi: 10.3866/PKU.DXHX202307022

    4. [4]

      Jin CHANG . Supercapacitor performance and first-principles calculation study of Co-doping Ni(OH)2. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1697-1707. doi: 10.11862/CJIC.20240108

    5. [5]

      Haiping Wang . A Streamlined Method for Drawing Lewis Structures Using the Valence State of Outer Atoms. University Chemistry, 2024, 39(8): 383-388. doi: 10.12461/PKU.DXHX202401073

    6. [6]

      Yonghui ZHOURujun HUANGDongchao YAOAiwei ZHANGYuhang SUNZhujun CHENBaisong ZHUYouxuan ZHENG . Synthesis and photoelectric properties of fluorescence materials with electron donor-acceptor structures based on quinoxaline and pyridinopyrazine, carbazole, and diphenylamine derivatives. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 701-712. doi: 10.11862/CJIC.20230373

    7. [7]

      Qi Li Pingan Li Zetong Liu Jiahui Zhang Hao Zhang Weilai Yu Xianluo Hu . Fabricating Micro/Nanostructured Separators and Electrode Materials by Coaxial Electrospinning for Lithium-Ion Batteries: From Fundamentals to Applications. Acta Physico-Chimica Sinica, 2024, 40(10): 2311030-. doi: 10.3866/PKU.WHXB202311030

    8. [8]

      Yan Li Xinze Wang Xue Yao Shouyun Yu . Kinetic Resolution Enabled by Photoexcited Chiral Copper Complex-Mediated Alkene EZ Isomerization: A Comprehensive Chemistry Experiment for Undergraduate Students. University Chemistry, 2024, 39(5): 1-10. doi: 10.3866/PKU.DXHX202309053

    9. [9]

      Jiaqi ANYunle LIUJianxuan SHANGYan GUOCe LIUFanlong ZENGAnyang LIWenyuan WANG . Reactivity of extremely bulky silylaminogermylene chloride and bonding analysis of a cubic tetragermylene. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1511-1518. doi: 10.11862/CJIC.20240072

    10. [10]

      Jinfu Ma Hui Lu Jiandong Wu Zhongli Zou . Teaching Design of Electrochemical Principles Course Based on “Cognitive Laws”: Kinetics of Electron Transfer Steps. University Chemistry, 2024, 39(3): 174-177. doi: 10.3866/PKU.DXHX202309052

    11. [11]

      Peng ZHOUXiao CAIQingxiang MAXu LIU . Effects of Cu doping on the structure and optical properties of Au11(dppf)4Cl2 nanocluster. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1254-1260. doi: 10.11862/CJIC.20240047

    12. [12]

      Qiangqiang SUNPengcheng ZHAORuoyu WUBaoyue CAO . Multistage microporous bifunctional catalyst constructed by P-doped nickel-based sulfide ultra-thin nanosheets for energy-efficient hydrogen production from water electrolysis. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1151-1161. doi: 10.11862/CJIC.20230454

    13. [13]

      Liang MAHonghua ZHANGWeilu ZHENGAoqi YOUZhiyong OUYANGJunjiang CAO . Construction of highly ordered ZIF-8/Au nanocomposite structure arrays and application of surface-enhanced Raman spectroscopy. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1743-1754. doi: 10.11862/CJIC.20240075

    14. [14]

      Yinyin Qian Rui Xu . Utilizing VESTA Software in the Context of Material Chemistry: Analyzing Twin Crystal Nanostructures in Indium Antimonide. University Chemistry, 2024, 39(3): 103-107. doi: 10.3866/PKU.DXHX202307051

    15. [15]

      Yinuo Wang Siran Wang Yilong Zhao Dazhen Xu . Selective Synthesis of Diarylmethyl Anilines and Triarylmethanes via Multicomponent Reactions: Introduce a Comprehensive Experiment of Organic Chemistry. University Chemistry, 2024, 39(8): 324-330. doi: 10.3866/PKU.DXHX202401063

    16. [16]

      Jingjing QINGFan HEZhihui LIUShuaipeng HOUYa LIUYifan JIANGMengting TANLifang HEFuxing ZHANGXiaoming ZHU . Synthesis, structure, and anticancer activity of two complexes of dimethylglyoxime organotin. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1301-1308. doi: 10.11862/CJIC.20240003

    17. [17]

      Xiaoling LUOPintian ZOUXiaoyan WANGZheng LIUXiangfei KONGQun TANGSheng WANG . Synthesis, crystal structures, and properties of lanthanide metal-organic frameworks based on 2, 5-dibromoterephthalic acid ligand. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1143-1150. doi: 10.11862/CJIC.20230271

    18. [18]

      Xiufang Wang Donglin Zhao Kehua Zhang Xiaojie Song . “Preparation of Carbon Nanotube/SnS2 Photoanode Materials”: A Comprehensive University Chemistry Experiment. University Chemistry, 2024, 39(4): 157-162. doi: 10.3866/PKU.DXHX202308025

    19. [19]

      Tengjiao Wang Tian Cheng Rongjun Liu Zeyi Wang Yuxuan Qiao An Wang Peng Li . Conductive Hydrogel-based Flexible Electronic System: Innovative Experimental Design in Flexible Electronics. University Chemistry, 2024, 39(4): 286-295. doi: 10.3866/PKU.DXHX202309094

    20. [20]

      Zizheng LUWanyi SUQin SHIHonghui PANChuanqi ZHAOChengfeng HUANGJinguo PENG . Surface state behavior of W doped BiVO4 photoanode for ciprofloxacin degradation. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 591-600. doi: 10.11862/CJIC.20230225

Metrics
  • PDF Downloads(1302)
  • Abstract views(1073)
  • HTML views(13)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return