Citation:
ZHAO Tian-Tian, LIN Rui, ZHANG Lu, CAO Chui-Hui, MA Jian-Xin. Effects of Pt Content on the Catalytic Performance of Co@Pt/C Core-Shell Structured Electrocatalysts[J]. Acta Physico-Chimica Sinica,
;2013, 29(08): 1745-1752.
doi:
10.3866/PKU.WHXB201305101
-
Core-shell structured Co@Pt/C electrocatalysts containing different mass fractions of Co to Pt, which are represented as 20% (w) Co@Pt(1:1)/C and 20% (w) Co@Pt(1:3)/C, were prepared by changing the ratio of metallic precursors using a successive reduction method. The structure and electrochemical performance of the as-prepared catalysts were characterized by transmission electron microscopy (TEM), X-ray photoelectron spectroscopy (XPS), cyclic voltammetry (CV), and linear sweep voltammetry (LSV). The performance of the as-prepared catalysts was compared with that of 40% (w) Co@Pt/C catalyst we synthesized previously. The sizes of Co@Pt(1:1) and Co@Pt(1:3) particles ranged from 2.2 to 2.3 nm, and the metal particles were well dispersed on the carbon support. The electrochemical specific area (ECSA) of 20% Co@Pt(1:1)/C (56 m2·g-1) and 20% Co@Pt(1:3)/C (60 m2·g-1) were higher than that of commercial 20% Pt/C (E-tek) (54 m2·g-1). Compared with those of 40% Co@Pt(1:1)/C and 40% Co@Pt(1:3)/C, the half-wave potentials of 20% Co@Pt(1:1)/C and 20% Co@Pt(1:3)/C shifted to the positive direction, and they correspondingly showed improved catalytic performance. The low cost and high performance of the 20% Co@Pt/C catalyst make it a promising low-Pt catalyst for proton exchange membrane fuel cells.
-
-
-
[1]
(1) Mazumder, V.; Lee, Y. M.; Sun, S. H. Adv. Funct. Mater. 2010,20, 1224. doi: 10.1002/adfm.v20:8
-
[2]
(2) Yang, H. Angew. Chem. Int. Edit. 2011, 50, 2674. doi: 10.1002/anie.201005868
-
[3]
(3) Fu, R.; Zheng, J. S.;Wang, X. Z.; Ma, J. X. Acta Phys. -Chim. Sin. 2011, 27 (9), 2141. [符蓉, 郑俊生, 王喜照, 马建新.物理化学学报, 2011, 27 (9), 2141.] doi: 10.3866/PKU.WHXB20110809
-
[4]
(4) Mukerjee, S.; Srinivasan, S.; Soriaga, M. P. J. Phys. Chem.1995, 99, 4577. doi: 10.1021/j100013a032
-
[5]
(5) Zong, J.; Huang, C. D.;Wang, Y. X. Battery Bimonthly 2011, 41 (2), 104. [宗军, 黄成德, 王宇新. 电池, 2011, 41 (2), 104.]
-
[6]
(6) Lim, B.; Jiang, M. J.; Camar , H. C. P.; Cho, E. C.; Tao, J.; Lu,X. M.; Zhu, Y. M.; Xia, Y. M. Science 2009, 324, 1302. doi: 10.1126/science.1170377
-
[7]
(7) Stamenkovic, V. R.; Fowler, B.; Mun, B. S.;Wang, G. F.; Ross,N. P.; Christopher, A. L.; Nenad, M. M. Science 2007, 315, 493.doi: 10.1126/science.1135941
-
[8]
(8) Wang, C.; Chi, M. F.; Li, D. G.; Strmcnik, D.; Vliet, D.;Wang,G. F.; Komanicky, V.; Chang, K. C.; Paulikas, A. P.; Tripkovic,D.; Pearson, J.; More, K. L.; Markovic, N. M.; Sramenkovic, V.R. J. Am. Chem. Soc. 2011, 133, 14396. doi: 10.1021/ja2047655
-
[9]
(9) Chen, Y. M.; Liang, Z. X.; Yang, F.; Liu, Y.W.; Chen, S. L.J. Phys. Chem. C 2011, 115, 24073. doi: 10.1021/jp207828n
-
[10]
(10) Zhang, J.; Yang, H. Z.; Fang, J. Y.; Zou, S. Z. Nano Lett. 2010,10, 638. doi: 10.1021/nl903717z
-
[11]
(11) Lin, R.; Zhang, H. Y.; Zhao, T. T.; Cao, C. H.; Yang, D. J.; Ma,J. X. Electrochimica Acta 2012, 62, 263. doi: 10.1016/j.electacta.2011.12.018
-
[12]
(12) Zhang, H. Y.; Cao, C. H.; Zhao, J.; Lin, R.; Ma, J. X. Chinese Journal of Catalysis 2012, 33 (2), 222. [张海艳, 曹春晖,赵健, 林瑞, 马建新. 催化学报, 2012, 33 (2), 222.]
-
[13]
(13) Zhu, H.; Li, X.W.;Wang, F. H. International Journal of Hydrogen Energy 2011, 36, 9151. doi: 10.1016/j.ijhydene.2011.04.224
-
[14]
(14) Mani, P.; Srivastava, R.; Strasser, P. J. Phys. Chem. C 2008, 112,2770. doi: 10.1021/jp0776412
-
[15]
(15) Dang, D.; Gao, H. L.; Peng, L. J.; Su, Y. L.; Liao, S. J.;Wang, Y.Acta Phys. -Chim. Sin. 2011, 27 (10), 2379. [党岱, 高海丽,彭良进, 苏允兰, 廖世军, 王晔. 物理化学学报, 2011, 27 (10), 2379.] doi: 10.3866/PKU.WHXB20110922
-
[16]
(16) Liu, B.; Liao, S. J.; Liang, Z. X. Progress in Chenmistry 2011,23 (5), 852. [刘宾, 廖世军, 梁振兴. 化学进展, 2011, 23 (5), 852.]
-
[17]
(17) Adzic, R. R.; Zhang, J.; Sasaki, K.; Vukmirovic, M. B.; Shao,M.;Wang, J. X.; Nilekar, A. U.; Marvrikakis, M.; Valerio, J. A.;Uribe, F. Top Catal. 2007, 46, 249. doi: 10.1007/s11244-007-9003-x
-
[18]
(18) Kristian, N.; Yu, Y. L.; Lee, J. M.; Liu, X.W.;Wang, X.Electrochimica Acta 2010, 56, 1000. doi: 10.1016/j.electacta.2010.09.073
-
[19]
(19) Wu, H. M.;Wexler, D.;Wang, G. X.; Lin, H. K. J. Solid State Electrochem. 2012, 16, 1105.
-
[20]
(20) Brushett, F. R.; Duong, H. T.; Ng, J.W.; Behrens, R. L.;Wieckowski, A.; Kenis, P. J. A. Journal of the Electrochemical Society 2010, 157 (6), B837.
-
[21]
(21) Wang, R. F.;Wang, H.;Wei, B. X.;Wang,W.; Lei, Z. Q.International Journal of Hydrogen Energy 2010, 35, 10081. doi: 10.1016/j.ijhydene.2010.07.008
-
[22]
(22) Lin, R.; Cao, C. H.; Zhao, T. T.; Huang, Z.; Li, B.;Wieckowski,A.; Ma, J. X. Journal of Power Sources 2013, 223, 190. doi: 10.1016/j.jpowsour.2012.09.073
-
[23]
(23) Yang, X. J.; Cheng, F. Y.; Tao, Z. L.; Chen, J. Journal of Power Sources 2011, 196, 2785. doi: 10.1016/j.jpowsour.2010.09.079
-
[24]
(24) Lee, M. H.; Do, J. S. Journal of Power Sources 2009, 188, 353.doi: 10.1016/j.jpowsour.2008.12.051
-
[25]
(25) Gasteiger, H. A.; Kocha, S. S.; Sompalli, B.;Wagner, F. T.Applied Catalysis B: Environmental 2005, 56, 9. doi: 10.1016/j.apcatb.2004.06.021
-
[26]
(26) Cao, C. H.; Lin, R.; Zhao, T. T.; Huang, Z.; Ma, J. X. Acta Phys. -Chim. Sin. 2013, 29 (1), 95. [曹春晖, 林瑞, 赵天天,黄真, 马建新. 物理化学学报, 2013, 29 (1), 95.] doi: 10.3866/PKU.WHXB201209272
-
[1]
-
-
-
[1]
Hailang JIA , Hongcheng LI , Pengcheng JI , Yang TENG , Mingyun GUAN . Preparation and performance of N-doped carbon nanotubes composite Co3O4 as oxygen reduction reaction electrocatalysts. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 693-700. doi: 10.11862/CJIC.20230402
-
[2]
Xiaofeng Zhu , Bingbing Xiao , Jiaxin Su , Shuai Wang , Qingran Zhang , Jun Wang . Transition Metal Oxides/Chalcogenides for Electrochemical Oxygen Reduction into Hydrogen Peroxides. Acta Physico-Chimica Sinica, 2024, 40(12): 2407005-. doi: 10.3866/PKU.WHXB202407005
-
[3]
Qi Li , Pingan Li , Zetong Liu , Jiahui Zhang , Hao Zhang , Weilai Yu , Xianluo Hu . Fabricating Micro/Nanostructured Separators and Electrode Materials by Coaxial Electrospinning for Lithium-Ion Batteries: From Fundamentals to Applications. Acta Physico-Chimica Sinica, 2024, 40(10): 2311030-. doi: 10.3866/PKU.WHXB202311030
-
[4]
Kun Xu , Xinxin Song , Zhilei Yin , Jian Yang , Qisheng Song . Comprehensive Experimental Design of Preferential Orientation of Zinc Metal by Heat Treatment for Enhanced Electrochemical Performance. University Chemistry, 2024, 39(4): 192-197. doi: 10.3866/PKU.DXHX202309050
-
[5]
Xinpeng LIU , Liuyang ZHAO , Hongyi LI , Yatu CHEN , Aimin WU , Aikui LI , Hao HUANG . Ga2O3 coated modification and electrochemical performance of Li1.2Mn0.54Ni0.13Co0.13O2 cathode material. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1105-1113. doi: 10.11862/CJIC.20230488
-
[6]
Yuting ZHANG , Zunyi LIU , Ning LI , Dongqiang ZHANG , Shiling ZHAO , Yu ZHAO . Nickel vanadate anode material with high specific surface area through improved co-precipitation method: Preparation and electrochemical properties. Chinese Journal of Inorganic Chemistry, 2024, 40(11): 2163-2174. doi: 10.11862/CJIC.20240204
-
[7]
Jiahong ZHENG , Jiajun SHEN , Xin BAI . Preparation and electrochemical properties of nickel foam loaded NiMoO4/NiMoS4 composites. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 581-590. doi: 10.11862/CJIC.20230253
-
[8]
Yuyao Wang , Zhitao Cao , Zeyu Du , Xinxin Cao , Shuquan Liang . Research Progress of Iron-based Polyanionic Cathode Materials for Sodium-Ion Batteries. Acta Physico-Chimica Sinica, 2025, 41(4): 100035-. doi: 10.3866/PKU.WHXB202406014
-
[9]
Zhuo Wang , Xue Bai , Kexin Zhang , Hongzhi Wang , Jiabao Dong , Yuan Gao , Bin Zhao . MOF模板法合成氮掺杂碳材料用于增强电化学钠离子储存和去除. Acta Physico-Chimica Sinica, 2025, 41(3): 2405002-. doi: 10.3866/PKU.WHXB202405002
-
[10]
Zhihuan XU , Qing KANG , Yuzhen LONG , Qian YUAN , Cidong LIU , Xin LI , Genghuai TANG , Yuqing LIAO . Effect of graphene oxide concentration on the electrochemical properties of reduced graphene oxide/ZnS. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1329-1336. doi: 10.11862/CJIC.20230447
-
[11]
Xue Dong , Xiaofu Sun , Shuaiqiang Jia , Shitao Han , Dawei Zhou , Ting Yao , Min Wang , Minghui Fang , Haihong Wu , Buxing Han . 碳修饰的铜催化剂实现安培级电流电化学还原CO2制C2+产物. Acta Physico-Chimica Sinica, 2025, 41(3): 2404012-. doi: 10.3866/PKU.WHXB202404012
-
[12]
Kun WANG , Wenrui LIU , Peng JIANG , Yuhang SONG , Lihua CHEN , Zhao DENG . Hierarchical hollow structured BiOBr-Pt catalysts for photocatalytic CO2 reduction. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1270-1278. doi: 10.11862/CJIC.20240037
-
[13]
Yang WANG , Xiaoqin ZHENG , Yang LIU , Kai ZHANG , Jiahui KOU , Linbing SUN . Mn single-atom catalysts based on confined space: Fabrication and the electrocatalytic oxygen evolution reaction performance. Chinese Journal of Inorganic Chemistry, 2024, 40(11): 2175-2185. doi: 10.11862/CJIC.20240165
-
[14]
Tong Zhou , Jun Li , Zitian Wen , Yitian Chen , Hailing Li , Zhonghong Gao , Wenyun Wang , Fang Liu , Qing Feng , Zhen Li , Jinyi Yang , Min Liu , Wei Qi . Experiment Improvement of “Redox Reaction and Electrode Potential” Based on the New Medical Concept. University Chemistry, 2024, 39(8): 276-281. doi: 10.3866/PKU.DXHX202401005
-
[15]
Fengqiao Bi , Jun Wang , Dongmei Yang . Specialized Experimental Design for Chemistry Majors in the Context of “Dual Carbon”: Taking the Assembly and Performance Evaluation of Zinc-Air Fuel Batteries as an Example. University Chemistry, 2024, 39(4): 198-205. doi: 10.3866/PKU.DXHX202311069
-
[16]
Yanan Liu , Yufei He , Dianqing Li . Preparation of Highly Dispersed LDHs-based Catalysts and Testing of Nitro Compound Reduction Performance: A Comprehensive Chemical Experiment for Research Transformation. University Chemistry, 2024, 39(8): 306-313. doi: 10.3866/PKU.DXHX202401081
-
[17]
Ping Ye , Lingshuang Qin , Mengyao He , Fangfang Wu , Zengye Chen , Mingxing Liang , Libo Deng . 荷叶衍生多孔碳的零电荷电位调节实现废水中电化学捕集镉离子. Acta Physico-Chimica Sinica, 2025, 41(3): 2311032-. doi: 10.3866/PKU.WHXB202311032
-
[18]
Yi YANG , Shuang WANG , Wendan WANG , Limiao CHEN . Photocatalytic CO2 reduction performance of Z-scheme Ag-Cu2O/BiVO4 photocatalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 895-906. doi: 10.11862/CJIC.20230434
-
[19]
Jiapei Zou , Junyang Zhang , Xuming Wu , Cong Wei , Simin Fang , Yuxi Wang . A Comprehensive Experiment Based on Electrocatalytic Nitrate Reduction into Ammonia: Synthesis, Characterization, Performance Exploration, and Applicable Design of Copper-based Catalysts. University Chemistry, 2024, 39(6): 373-382. doi: 10.3866/PKU.DXHX202312081
-
[20]
Zelong LIANG , Shijia QIN , Pengfei GUO , Hang XU , Bin ZHAO . Synthesis and electrocatalytic CO2 reduction performance of metal-organic framework catalysts loaded with silver particles. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 165-173. doi: 10.11862/CJIC.20240409
-
[1]
Metrics
- PDF Downloads(713)
- Abstract views(817)
- HTML views(17)