Citation: CAO Yin-Liang, LI Zhi-Lin, WANG Feng, LIU Jing-Jun, JI Jing, WANG Jian-Jun, ZHANG Liang-Hu, QIN Shi-Yong. Electrochemical Preparation of Ni-Sn Active Cathode and Its Electrocatalytic Hydrogen Evolution Reaction Mechanisms in Alkaline Solution[J]. Acta Physico-Chimica Sinica, ;2013, 29(07): 1479-1486. doi: 10.3866/PKU.WHXB201305083 shu

Electrochemical Preparation of Ni-Sn Active Cathode and Its Electrocatalytic Hydrogen Evolution Reaction Mechanisms in Alkaline Solution

  • Received Date: 7 March 2013
    Available Online: 8 May 2013

    Fund Project: 国家自然科学基金(51125007)资助项目 (51125007)

  • A simple galvanostatic electrodeposition method was used to synthesize an active Ni-Sn electrode on a Cu foil substrate. Characterization by high-resolution transmission electron microscopy (HRTEM), energy-dispersive spectroscopy (EDS), and X-ray diffraction (XRD) revealed that the crystal structures of the deposited films transformed from amorphous structures composed of Ni crystal embryos and amorphous Ni-Sn to Ni3Sn4/ Ni3Sn2 mixed crystals with increasing Sn content. Scanning electron microscope (SEM) images indicated that the amorphous Ni-Sn electrode possessed a smooth surface with uniform distribution of small particles, whereas the Ni3Sn4/Ni3Sn2 mixed crystalline electrode exhibited a rough surface composed of lamellar structures. The polarization curves measured in 1 mol·L-1 NaOH solution at 25℃ indicated that the amorphous Ni-Sn electrode showed a smaller overpotential (85 mV) and better electrocatalytic performance for hydrogen evolution than the mixed crystalline electrode. Electrochemical impedance spectroscopy (EIS) results showed that the hydrogen evolution reaction occurs on the Ni-Sn alloy electrode under a mixture of Volmer and Heyrovsky control. The higher activity of the amorphous Ni-Sn electrode was attributed to the faster charge transfer and electrochemical adsorption and desorption rates of hydrogen atoms compared with those on the mixed crystalline electrode.

  • 加载中
    1. [1]

      (1) Steinfeld, A. Int. J. Hydrog. Energy 2002, 27, 611. doi: 10.1016/S0360-3199(01)00177-X

    2. [2]

      (2) Bockris, J.; Veziroglu, T, N. Int. J. Hydrog. Energy 2007, 32,1605. doi: 10.1016/j.ijhydene.2007.04.037

    3. [3]

      (3) Kotay, S. M.; Das, D. Int. J. Hydrog. Energy 2008, 33, 258. doi: 10.1016/j.ijhydene.2007.07.031

    4. [4]

      (4) Turner, J. A. Science 2004, 305, 972.

    5. [5]

      (5) Solmaz, R.; Kardas, G. Electrochim. Acta 2009, 54, 3726. doi: 10.1016/j.electacta.2009.01.064

    6. [6]

      (6) Brown, K. A.; Dayal, S.; Ai, X.; Rumbles, G.; King, P.W.J. Am. Chem. Soc. 2010, 132, 9672. doi: 10.1021/ja101031r

    7. [7]

      (7) Zeng, K.; Zhang, D. K. Prog. Energy Combust. Sci. 2010, 36,307. doi: 10.1016/j.pecs.2009.11.002

    8. [8]

      (8) Tasic, G. S.; Maslovara, S. P.; Zugic, D. L.; Maksic, A. D.;Marceta, K. M. P. Int. J. Hydrog. Energy 2011, 36, 11588. doi: 10.1016/j.ijhydene.2011.06.081

    9. [9]

      (9) Domińguez-Crespo, M. A.; Torres-Huerta, A. M.;Brachetti-Sibaja, B.; Flores-Vela, A. Int. J. Hydrog. Energy2011, 36, 135. doi: 10.1016/j.ijhydene.2010.09.064

    10. [10]

      (10) Xing, J.W.; Kang, J. Z.;Wang, Y. L.; Zhang, L. H.; Lu, Y. Q.;Liu, Y.; Yu, X.;Wang, R. Active Cathode and Its PreparationMethod. CN Patent 101 029 405.A, 2007-09-05. [邢家悟, 康建忠, 王玉兰, 张良虎, 陆崖青, 刘怡, 于昕, 王锐. 活性阴极及其制备方法: 中国, CN101 029 405.A.[P]. 2007-09-05.]

    11. [11]

      (11) Jayalakshmi, M.; Puspitasari, I.; Jung, K.W. D.; Joo, O. S.J. Electrochem. Soc. 2008, 3, 787.

    12. [12]

      (12) He, H.W.; Liu, H. J.; Liu, F.; Zhou, K. C. Surf. Coat. Technol.2006, 201, 958.

    13. [13]

      (13) Donten, M.; Cesiulis, H.; Stojek, Z. Electrochim. Acta 2005, 50,1405. doi: 10.1016/j.electacta.2004.08.028

    14. [14]

      (14) Wei, Z. D.; Yan, A. Z.; Feng, Y. C.; Li, L.; Sun, C. X.; Shao, Z.G.; Shen, P. K. Electrochem. Commun. 2007, 9, 2709.

    15. [15]

      (15) Santos, M. B. F.; Dasilva, E. P.; Andrade, R.; Dias, J. A. F.Electrochim. Acta 1992, 37, 29. doi: 10.1016/0013-4686(92)80007-9

    16. [16]

      (16) Solmaz, R.; Kardas, G. Electrochim. Acta 2009, 54, 3726. doi: 10.1016/j.electacta.2009.01.064

    17. [17]

      (17) Herraiz-Cardona, I.; Ortega, E.; Pérez-Herranz, V. Electrochim. Acta 2011, 56, 1308. doi: 10.1016/j.electacta.2010.10.093

    18. [18]

      (18) Song, L. J.; Meng, H. M. Int. J. Hydrog. Energy 2010, 35,10060. doi: 10.1016/j.ijhydene.2010.08.003

    19. [19]

      (19) Jovic, V. D.; Lacnjevac, U.; Jovic, B. M.; Karanovic, L. J.;Krstajic, N. V. Int. J. Hydrog. Energy 2012, 37, 17882. doi: 10.1016/j.ijhydene.2012.09.110

    20. [20]

      (20) Profeti, L. P. R.; Profeti, D.; Olivi, P. Int. J. Hydrog. Energy2009, 34, 2747. doi: 10.1016/j.ijhydene.2009.01.011

    21. [21]

      (21) Solmaz, R.; Doner, A.; Kardas, G. Electrochem. Commun. 2008,10, 1909. doi: 10.1016/j.elecom.2008.10.011

    22. [22]

      (22) Fei, X. M.; Zou, Y. J.; Ren, X. L. Journal of Huazhong Normal University (Natural Sciences) 2005, 39, 71. [费锡明, 邹勇进,任新林. 华中师范大学学报(自然科学版), 2005, 39, 71.]

    23. [23]

      (23) Huot, J. Y. J. Electrochem. Soc. 1991, 138, 1316. doi: 10.1149/1.2085778

    24. [24]

      (24) Sequeira, C. A. C.; Santos, D. M. F.; Brito, P. S. D. Energy 2011,36, 847. doi: 10.1016/j.energy.2010.12.030

    25. [25]

      (25) Cao, Y. L.;Wang, F.; Liu, J. J.;Wang, J. J.; Zhang, L. H.; Qin, S.Y. Acta Phys. -Chim. Sin. 2009, 25, 1979. [曹寅亮, 王峰,刘景军, 王建军, 张良虎, 覃事永. 物理化学学报, 2009, 25,1979.] doi: 10.3866/PKU.WHXB20091017

    26. [26]

      (26) Song, L. J.; Meng, H. M. Acta Phys. -Chim. Sin. 2010, 26, 2375.[宋利君, 孟惠民. 物理化学学报, 2010, 26, 2375.] doi: 10.3866/PKU.WHXB20100847

    27. [27]

      (27) Huang, Y. J.; Lai, C. H.;Wu, P.W.; Chen, L. Y. J. Electrochem. Soc. 2010, 157, 18.

    28. [28]

      (28) Marozzi, C. A.; Chialvo, A. C. Electrochim. Acta 2000, 45,2111. doi: 10.1016/S0013-4686(99)00422-3

    29. [29]

      (29) Yamashita, H.; Yamamura, T. J. Electrochem. Soc. 1993, 140,2238. doi: 10.1149/1.2220802

    30. [30]

      (30) Yamashita, H.; Yamamura, T.; Yoshimoto, K. Ni/Sn CathodeHaving Reduced Hydrogen Overvoltage. USA Pat. Appl.4801368, 1987.

    31. [31]

      (31) Ma, Q.; Zhang, Y. X.; Sui, R.;Wei, H. X. Chemical Defence on Ships 2010, 5, 47. [马强, 张跃兴, 隋然, 魏海兴. 舰船防化, 2010, 5, 47.]

    32. [32]

      (32) Kellenbergera, A.; Vaszilcsina, N.; Brandlb,W.; Duteanua, N.Int. J. Hydrog. Energy 2007, 32, 3258.

    33. [33]

      (33) Hu, G. X.; Qian, M. G. Metallurgy; Shanghai Science andTechnology Press: Shanghai, 1980; pp 129-130. [胡赓祥,钱苗根. 金属学. 上海: 上海科学技术出版社, 1980: 129-130.]

    34. [34]

      (34) Itoh, R.;Wang, F.;Watanabe, T. J. Japan Inst. Metals 2001, 65,495. [伊藤清, 王峰, 渡辺徹. 日本金属学会誌, 2001, 65,495.]

    35. [35]

      (35) Watanabe, T. Fine Plating, 1st ed.; Technical InformationInstitute Co., Ltd: Tokyo, 2002; pp 389-397. [渡辺徹. ファインプレーティング, 1st.; 東京: 技術情報協会, 2002:389-397.]

    36. [36]

      (36) Okamoto, H. J. Phase Equilib. Diffus. 2008, 29, 297. doi: 10.1007/s11669-008-9313-0

    37. [37]

      (37) Oue, S.; Nakano, H.; Kuroda, R.; Kobayashi, S.; Fukushima, H.Materials Transactions 2006, 6, 1550.

    38. [38]

      (38) Zhang,W. G.; Shang, Y. P.; Liu, L. N.; Yao, S.W.;Wang, H. Z.Acta Phys. -Chim. Sin. 2011, 27, 900. [张卫国, 尚云鹏, 刘丽娜, 姚素薇, 王宏智. 物理化学学报, 2011, 27, 900.] doi: 10.3866/PKU.WHXB20110344

    39. [39]

      (39) Kaninski, M. P. M.; Nikolic, V. M.; Tasic, G. S.; Rakocevic, Z.L. Int. J. Hydrog. Energy 2009, 34, 703. doi: 10.1016/j.ijhydene.2008.09.024

    40. [40]

      (40) Birry, L.; Lasia, A. J. Appl. Electrochem. 2004, 34, 735. doi: 10.1023/B:JACH.0000031161.26544.6a

    41. [41]

      (41) Pierozynski, B. Int. J. Electrochem. Sci. 2011, 6, 63.

    42. [42]

      (42) Antozzi, A. L.; Bargioni, C.; Iacopetti, L.; Musiani, M.;Vázquez-Gómez, L. Electrochim. Acta 2008, 53, 7410. doi: 10.1016/j.electacta.2007.12.025


  • 加载中
    1. [1]

      Wenxiu Yang Jinfeng Zhang Quanlong Xu Yun Yang Lijie Zhang . Bimetallic AuCu Alloy Decorated Covalent Organic Frameworks for Efficient Photocatalytic Hydrogen Production. Acta Physico-Chimica Sinica, 2024, 40(10): 2312014-. doi: 10.3866/PKU.WHXB202312014

    2. [2]

      Weina Wang Lixia Feng Fengyi Liu Wenliang Wang . Computational Chemistry Experiments in Facilitating the Study of Organic Reaction Mechanism: A Case Study of Electrophilic Addition of HCl to Asymmetric Alkenes. University Chemistry, 2025, 40(3): 206-214. doi: 10.12461/PKU.DXHX202407022

    3. [3]

      Xueting Cao Shuangshuang Cha Ming Gong . 电催化反应中的界面双电层:理论、表征与应用. Acta Physico-Chimica Sinica, 2025, 41(5): 100041-. doi: 10.1016/j.actphy.2024.100041

    4. [4]

      Qiuyu Xiang Chunhua Qu Guang Xu Yafei Yang Yue Xia . A Journey beyond “Alum”. University Chemistry, 2024, 39(11): 189-195. doi: 10.12461/PKU.DXHX202404094

    5. [5]

      Heng Zhang . Determination of All Rate Constants in the Enzyme Catalyzed Reactions Based on Michaelis-Menten Mechanism. University Chemistry, 2024, 39(4): 395-400. doi: 10.3866/PKU.DXHX202310047

    6. [6]

      Yuchen Zhou Huanmin Liu Hongxing Li Xinyu Song Yonghua Tang Peng Zhou . 设计热力学稳定的贵金属单原子光催化剂用于乙醇的高效非氧化转化形成高纯氢和增值产物乙醛. Acta Physico-Chimica Sinica, 2025, 41(6): 100067-. doi: 10.1016/j.actphy.2025.100067

    7. [7]

      Kai CHENFengshun WUShun XIAOJinbao ZHANGLihua ZHU . PtRu/nitrogen-doped carbon for electrocatalytic methanol oxidation and hydrogen evolution by water electrolysis. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1357-1367. doi: 10.11862/CJIC.20230350

    8. [8]

      Yongwei ZHANGChuang ZHUWenbin WUYongyong MAHeng YANG . Efficient hydrogen evolution reaction activity induced by ZnSe@nitrogen doped porous carbon heterojunction. Chinese Journal of Inorganic Chemistry, 2025, 41(4): 650-660. doi: 10.11862/CJIC.20240386

    9. [9]

      Bo YANGGongxuan LÜJiantai MA . Nickel phosphide modified phosphorus doped gallium oxide for visible light photocatalytic water splitting to hydrogen. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 736-750. doi: 10.11862/CJIC.20230346

    10. [10]

      Qingqing SHENXiangbowen DUKaicheng QIANZhikang JINZheng FANGTong WEIRenhong LI . Self-supporting Cu/α-FeOOH/foam nickel composite catalyst for efficient hydrogen production by coupling methanol oxidation and water electrolysis. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1953-1964. doi: 10.11862/CJIC.20240028

    11. [11]

      Jiajie Li Xiaocong Ma Jufang Zheng Qiang Wan Xiaoshun Zhou Yahao Wang . Recent Advances in In-Situ Raman Spectroscopy for Investigating Electrocatalytic Organic Reaction Mechanisms. University Chemistry, 2025, 40(4): 261-276. doi: 10.12461/PKU.DXHX202406117

    12. [12]

      Wenjiang LIPingli GUANRui YUYuansheng CHENGXianwen WEI . C60-MoP-C nanoflowers van der Waals heterojunctions and its electrocatalytic hydrogen evolution performance. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 771-781. doi: 10.11862/CJIC.20230289

    13. [13]

      Zhengyu Zhou Huiqin Yao Youlin Wu Teng Li Noritatsu Tsubaki Zhiliang Jin . Synergistic Effect of Cu-Graphdiyne/Transition Bimetallic Tungstate Formed S-Scheme Heterojunction for Enhanced Photocatalytic Hydrogen Evolution. Acta Physico-Chimica Sinica, 2024, 40(10): 2312010-. doi: 10.3866/PKU.WHXB202312010

    14. [14]

      Jiao CHENYi LIYi XIEDandan DIAOQiang XIAO . Vapor-phase transport of MFI nanosheets for the fabrication of ultrathin b-axis oriented zeolite membranes. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 507-514. doi: 10.11862/CJIC.20230403

    15. [15]

      Qiangqiang SUNPengcheng ZHAORuoyu WUBaoyue CAO . Multistage microporous bifunctional catalyst constructed by P-doped nickel-based sulfide ultra-thin nanosheets for energy-efficient hydrogen production from water electrolysis. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1151-1161. doi: 10.11862/CJIC.20230454

    16. [16]

      Hao GUOTong WEIQingqing SHENAnqi HONGZeting DENGZheng FANGJichao SHIRenhong LI . Electrocatalytic decoupling of urea solution for hydrogen production by nickel foam-supported Co9S8/Ni3S2 heterojunction. Chinese Journal of Inorganic Chemistry, 2024, 40(11): 2141-2154. doi: 10.11862/CJIC.20240085

    17. [17]

      Xi YANGChunxiang CHANGYingpeng XIEYang LIYuhui CHENBorao WANGLudong YIZhonghao HAN . Co-catalyst Ni3N supported Al-doped SrTiO3: Synthesis and application to hydrogen evolution from photocatalytic water splitting. Chinese Journal of Inorganic Chemistry, 2025, 41(3): 440-452. doi: 10.11862/CJIC.20240371

    18. [18]

      Xinyu Miao Hao Yang Jie He Jing Wang Zhiliang Jin . 调整Keggin型多金属氧酸盐电子结构构建S型异质结用于光催化析氢. Acta Physico-Chimica Sinica, 2025, 41(6): 100051-. doi: 10.1016/j.actphy.2025.100051

    19. [19]

      Lei Shi . Nucleophilicity and Electrophilicity of Radicals. University Chemistry, 2024, 39(11): 131-135. doi: 10.3866/PKU.DXHX202402018

    20. [20]

      Yue Zhao Yanfei Li Tao Xiong . Copper Hydride-Catalyzed Nucleophilic Additions of Unsaturated Hydrocarbons to Aldehydes and Ketones. University Chemistry, 2024, 39(4): 280-285. doi: 10.3866/PKU.DXHX202309001

Metrics
  • PDF Downloads(681)
  • Abstract views(1166)
  • HTML views(10)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return