Citation: LOU Peng-Xiao, WANG Yu-Jie, BAI Guang-Yue, FAN Chao-Ying, Wang Yi-Lin. Direct Evidence for the Energy of Weak Interactions between Surfactant Molecules Using High Sensitivity Isothermal Titration Calorimetry[J]. Acta Physico-Chimica Sinica, ;2013, 29(07): 1401-1407. doi: 10.3866/PKU.WHXB201304282 shu

Direct Evidence for the Energy of Weak Interactions between Surfactant Molecules Using High Sensitivity Isothermal Titration Calorimetry

  • Received Date: 18 February 2013
    Available Online: 28 April 2013

    Fund Project: 国家自然科学基金(21273061) (21273061)

  • Calorimetry is a direct experimental method that can be used to study the thermodynamics of weak interactions between surfactant molecules, allowing the energetic parameters of such interactions to be obtained. In this work, a nano-isothermal titration calorimeter with a thermostat (TAM III) was used to evaluate the thermodynamic behavior of molecular self-assemblies of single and mixed surfactants in aqueous solution. Electrical calibration of this instrument showed that its precision is better than ±0.09%. The accuracy of the system was tested by measuring the reaction heat of tris-hydroxymethylaminomethane (Tris), employed often as a calorimetric standard substance, with hydrochloric acid. The resulting value ((-47.48±0.12) kJ·mol-1) agreed well with that in the literature. We then determined the critical micelle concentration (cmc) and enthalpy of micellization for dodecyltrimethylammonium bromide (DTAB) with a“head-and-tail”structure, which were consistent with reported values, as well as reliable results for sodium cholate (NaC) with a rigid steroid skeleton composed of hydrophilic and hydrophobic surfaces. Furthermore, for the mixed system of oppositely charged surfactants (DTAB/NaC), the mixed cmc and enthalpy of mixed micellization were also obtained in NaC- and DTAB-rich regions. A stronger synergistic effect was observed between the two types of surfactants in the NaC-rich region than in the DTAB-rich one. Conductivity measurements allowed the thermodynamic behavior of the mixed system (DTAB/NaC) to be discussed in detail.

  • 加载中
    1. [1]

      (1) Randzio, S. L. Annu. Rep. Prog. Chem. Sect. C 2002, 98, 157.

    2. [2]

      (2) Hansen, L. D.; Fellingham, G.W.; Russell, D. J. Anal. Biochem.2011, 409, 220. doi: 10.1016/j.ab.2010.11.002

    3. [3]

      (3) Freyer, M.W.; Lewis, E. A. Methods Cell Biol. 2008, 84, 79.doi: 10.1016/S0091-679X(07)84004-0

    4. [4]

      (4) Ghai, R.; Falconer, R. J.; Collins, B. M. J. Mol. Recognit. 2012,25, 32. doi: 10.1002/jmr.1167

    5. [5]

      (5) Yu, Z.W.;Wu, F. G. Scientia Sinica Chimica 2010, 40 (9),1210. [尉志武, 吴富根. 中国科学: 化学, 2010, 40 (9), 1210.]

    6. [6]

      (6) Roselin, L. S.; Lin, M. S.; Lin, P. H.; Chang, Y.; Chen,W. Y.Biotechnol. J. 2010, 5, 85. doi: 10.1002/biot.v5:1

    7. [7]

      (7) Bouchemal, K. Drug Discovery Today 2008, 13, 21.

    8. [8]

      (8) Krishnamurthy, V. M.; Bohall, B. R.; Semetey, V.; Whitesides,G. M. J. Am. Chem. Soc. 2006, 128, 5802. doi: 10.1021/ja060070r

    9. [9]

      (9) Wilfong, E. M.; Kogiso, Y.; Muthukrishnan, S.; Kwatz, T.; Du,Y.; Bowie, A.; Naismith, J. H.; Hadad, C. M.; Toone, E. J.;Gustafson, T. L. J. Am. Chem. Soc. 2011, 133, 11515. doi: 10.1021/ja1098287

    10. [10]

      (10) Myslinski, J. M.; De Lorbe, J. E.; Clements, J. H.; Martin, S. F.J. Am. Chem. Soc. 2011, 133, 18518. doi: 10.1021/ja2068752

    11. [11]

      (11) Hu, Y. J.; Jiang, F. L.; Ouyang, Y.; Liu, Y. Scientia Sinica Chimica 2010, 40 (9), 1276. [胡艳军, 蒋风雷, 欧阳宇,刘义. 中国科学: 化学, 2010, 40 (9), 1276.]

    12. [12]

      (12) Bai, G. Y.; Santos, L. M. N. B. F.; Nishifor, M.; Lopes, A.;Bastons, M. J. Phys. Chem. B 2004, 108, 405.

    13. [13]

      (13) Olofsson, G.; Loh,W. J. Braz. Chem. Soc. 2009, 20, 577. doi: 10.1590/S0103-50532009000400002

    14. [14]

      (14) Bouchemala, K.; Agnely, F.; Koffi, A.; Djabourov, M.; Ponchel,G. J. Mol. Recognit. 2010, 23, 335.

    15. [15]

      (15) Adão, R.; Bai, G. Y.; Loh,W.; Bastos, M. J. Chem. Thermodyn.2012, 52, 57. doi: 10.1016/j.jct.2011.12.018

    16. [16]

      (16) Madenci, D.; Egelhaaf, S. U. Curr. Opin. Colloid Interface Sci.2010, 15, 109. doi: 10.1016/j.cocis.2009.11.010

    17. [17]

      (17) Sugihara, G.; Nagadome, S.; Oh, S.W.; Ko, J. S. J. Oleo Sci.2008, 57, 61. doi: 10.5650/jos.57.61

    18. [18]

      (18) Hildebrand, A.; Garidel, P.; Neubert, R.; Blume, A. Langmuir2004, 20, 320. doi: 10.1021/la035526m

    19. [19]

      (19) Azum, N.; Naqvi, A. Z.; Akram, M.; Kabir-ud-Din. Acta Phys. -Chim. Sin. 2010, 26, 1565. [Azum, N., Naqvi, A. Z.,Akram, M., Kabir-ud-Din. 物理化学学报, 2010, 26, 1565.] doi: 10.3866/PKU.WHXB20100610

    20. [20]

      (20) Wang, Y. J.; Bai, G. Y.; Marques, E. F.; Yan, H. K. J. Phys. Chem. B 2006, 110, 5294. doi: 10.1021/jp054323z

    21. [21]

      (21) Jiang, L. X.;Wang, K.; Deng, M. L.;Wang, Y. L.; Huang, J. B. Langmuir 2008, 24, 4600. doi: 10.1021/la7035554

    22. [22]

      (22) Bai, G. Y.;Wang, Y. J.;Wang, J. B. Han, B. X.; Yan, H. K.Langmuir 2001, 17, 3522. doi: 10.1021/la000768x

    23. [23]

      (23) Cao, X. L.; Lü, K.; Cui, X. H.; Shi, J.; Yuan, S. L. Acta Phys. -Chim. Sin. 2010, 26, 1959. [曹绪龙, 吕凯, 崔晓红,石静, 苑世领. 物理化学学报, 2010, 26, 1959.] doi: 10.3866/PKU.WHXB20100706

    24. [24]

      (24) Long, P. F.; Hao, J. C. Adv. Colloid Interface Sci. 2012,171-172, 66.

    25. [25]

      (25) Zheng, P. Z.; Cai, D. X.; Zhang, Z. G.; Yang, Y.; Yin, T. X.;Shen,W. G. Macromolecules 2013, 46, 247. doi: 10.1021/ma300793m

    26. [26]

      (26) Bai, G. Y.;Wang, J. B.; Yang, G. Y.; Han, B. X.; Yan, H. K. Acta Chim. Sin. 2000, 589 (9), 1103. [白光月, 王金本, 杨冠英, 韩布兴, 闫海科. 化学学报, 2000, 589 (9), 1103.]

    27. [27]

      (27) Reis, S.; Moutinho, C. G.; Matos, C.; Castro, B. D.; Gameiro,P.; Lima, J. L. F. C. Anal. Biochem. 2004, 334, 117. doi: 10.1016/j.ab.2004.07.017

    28. [28]

      (28) Garidel, P.; Hildebrand, A.; Neubert, R.; Blume, A. Langmuir2000, 16, 5267. doi: 10.1021/la9912390

    29. [29]

      (29) Zana, R. Langmuir 1996, 12, 1208. doi: 10.1021/la950691q

    30. [30]

      (30) Zana, R. J. Colloid Interface Sci. 1980, 78 (2), 330. doi: 10.1016/0021-9797(80)90571-8


  • 加载中
    1. [1]

      Yukai Jiang Yihan Wang Yunkai Zhang Yunping Wei Ying Ma Na Du . Characterization and Phase Diagram of Surfactant Lyotropic Liquid Crystal. University Chemistry, 2024, 39(4): 114-118. doi: 10.3866/PKU.DXHX202309033

    2. [2]

      Congying Lu Fei Zhong Zhenyu Yuan Shuaibing Li Jiayao Li Jiewen Liu Xianyang Hu Liqun Sun Rui Li Meijuan Hu . Experimental Improvement of Surfactant Interface Chemistry: An Integrated Design for the Fusion of Experiment and Simulation. University Chemistry, 2024, 39(3): 283-293. doi: 10.3866/PKU.DXHX202308097

    3. [3]

      Yongmin Zhang Shuang Guo Mingyue Zhu Menghui Liu Sinong Li . Design and Improvement of Physicochemical Experiments Based on Problem-Oriented Learning: a Case Study of Liquid Surface Tension Measurement. University Chemistry, 2024, 39(2): 21-27. doi: 10.3866/PKU.DXHX202307026

    4. [4]

      Jiayu Tang Jichuan Pang Shaohua Xiao Xinhua Xu Meifen Wu . Improvement for Measuring Transference Numbers of Ions by Moving-Boundary Method. University Chemistry, 2024, 39(5): 193-200. doi: 10.3866/PKU.DXHX202311021

    5. [5]

      Xiaohui Li Ze Zhang Jingyi Cui Juanjuan Yin . Advanced Exploration and Practice of Teaching in the Experimental Course of Chemical Engineering Thermodynamics under the “High Order, Innovative, and Challenging” Framework. University Chemistry, 2024, 39(7): 368-376. doi: 10.3866/PKU.DXHX202311027

    6. [6]

      Ruming Yuan Pingping Wu Laiying Zhang Xiaoming Xu Gang Fu . Patriotic Devotion, Upholding Integrity and Innovation, Wholeheartedly Nurturing the New: The Ideological and Political Design of the Experiment on Determining the Thermodynamic Functions of Chemical Reactions by Electromotive Force Method. University Chemistry, 2024, 39(4): 125-132. doi: 10.3866/PKU.DXHX202311057

    7. [7]

      Yiying Yang Dongju Zhang . Elucidating the Concepts of Thermodynamic Control and Kinetic Control in Chemical Reactions through Theoretical Chemistry Calculations: A Computational Chemistry Experiment on the Diels-Alder Reaction. University Chemistry, 2024, 39(3): 327-335. doi: 10.3866/PKU.DXHX202309074

    8. [8]

      Yue Wu Jun Li Bo Zhang Yan Yang Haibo Li Xian-Xi Zhang . Research on Kinetic and Thermodynamic Transformations of Organic-Inorganic Hybrid Materials for Fluorescent Anti-Counterfeiting Application information: Introducing a Comprehensive Chemistry Experiment. University Chemistry, 2024, 39(6): 390-399. doi: 10.3866/PKU.DXHX202403028

    9. [9]

      Shuang Meng Haixin Long Zhou Zhou Meizhu Rong . Inorganic Chemistry Curriculum Design and Implementation of Based on “Stepped-Task Driven + Multi-Dimensional Output” Model: A Case Study on Intermolecular Forces. University Chemistry, 2024, 39(3): 122-131. doi: 10.3866/PKU.DXHX202309008

    10. [10]

      Xinyu ZENGGuhua TANGJianming OUYANG . Inhibitory effect of Desmodium styracifolium polysaccharides with different content of carboxyl groups on the growth, aggregation and cell adhesion of calcium oxalate crystals. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1563-1576. doi: 10.11862/CJIC.20230374

    11. [11]

      Linhan Tian Changsheng Lu . Discussion on Sextuple Bonding in Diatomic Motifs of Chromium Family Elements. University Chemistry, 2024, 39(8): 395-402. doi: 10.3866/PKU.DXHX202401056

    12. [12]

      Shule Liu . Application of SPC/E Water Model in Molecular Dynamics Teaching Experiments. University Chemistry, 2024, 39(4): 338-342. doi: 10.3866/PKU.DXHX202310029

    13. [13]

      Jinghua Wang Yanxin Yu Yanbiao Ren Yesheng Wang . Integration of Science and Education: Investigation of Tributyl Citrate Synthesis under the Promotion of Hydrate Molten Salts for Research and Innovation Training. University Chemistry, 2024, 39(11): 232-240. doi: 10.3866/PKU.DXHX202402057

    14. [14]

      Wei Zhong Dan Zheng Yuanxin Ou Aiyun Meng Yaorong Su . K原子掺杂高度面间结晶的g-C3N4光催化剂及其高效H2O2光合成. Acta Physico-Chimica Sinica, 2024, 40(11): 2406005-. doi: 10.3866/PKU.WHXB202406005

    15. [15]

      Xinting XIONGZhiqiang XIONGPanlei XIAOXuliang NIEXiuying SONGXiuguang YI . Synthesis, crystal structures, Hirshfeld surface analysis, and antifungal activity of two complexes Na(Ⅰ)/Cd(Ⅱ) assembled by 5-bromo-2-hydroxybenzoic acid ligands. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1661-1670. doi: 10.11862/CJIC.20240145

    16. [16]

      Min Gu Huiwen Xiong Liling Liu Jilie Kong Xueen Fang . Rapid Quantitative Detection of Procalcitonin by Microfluidics: An Instrumental Analytical Chemistry Experiment. University Chemistry, 2024, 39(4): 87-93. doi: 10.3866/PKU.DXHX202310120

    17. [17]

      Zhuo WANGJunshan ZHANGShaoyan YANGLingyan ZHOUYedi LIYuanpei LAN . Preparation and photocatalytic performance of CeO2-reduced graphene oxide by thermal decomposition. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1708-1718. doi: 10.11862/CJIC.20240067

    18. [18]

      Yang Lv Yingping Jia Yanhua Li Hexiang Zhong Xinping Wang . Integrating the Ideological Elements with the “Chemical Reaction Heat” Teaching. University Chemistry, 2024, 39(11): 44-51. doi: 10.12461/PKU.DXHX202402059

    19. [19]

      Ling Bai Limin Lu Xiaoqiang Wang Dongping Wu Yansha Gao . Exploration and Practice of Teaching Reforms in “Quantitative Analytical Chemistry” under the Perspective of New Agricultural Science. University Chemistry, 2024, 39(3): 158-166. doi: 10.3866/PKU.DXHX202308101

    20. [20]

      Yaling Chen . Basic Theory and Competitive Exam Analysis of Dynamic Isotope Effect. University Chemistry, 2024, 39(8): 403-410. doi: 10.3866/PKU.DXHX202311093

Metrics
  • PDF Downloads(885)
  • Abstract views(977)
  • HTML views(13)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return