Citation: LI Ling-Ling, Janik J. Michael, NIE Xiao-Wa, SONG Chun-Shan, GUO Xin-Wen. Reaction Mechanism of Toluene Methylation with Dimethyl Carbonate or Methanol Catalyzed by H-ZSM-5[J]. Acta Physico-Chimica Sinica, ;2013, 29(07): 1467-1478. doi: 10.3866/PKU.WHXB201304262 shu

Reaction Mechanism of Toluene Methylation with Dimethyl Carbonate or Methanol Catalyzed by H-ZSM-5

  • Received Date: 29 January 2013
    Available Online: 26 April 2013

    Fund Project: 新世纪优秀人才项目(NCET-04-0268) (NCET-04-0268)

  • Para-xylene is an important petrochemical that can be produced by the methylation of toluene. Here, the mechanism of toluene methylation with dimethyl carbonate (DMC) or methanol catalyzed by H-ZSM-5 was studied using the“our own N-layered integrated molecular orbital+molecular mechanics” (ONIOM) in combination with density functional theory (DFT) methods. The adsorption of reactants and desorption of products are considered, and the structures of important intermediates and transition states are described. Computational rate constants are used to estimate the kinetic activity of toluene methylation reactions. The reaction mechanism of toluene methylation with DMC and that with methanol catalyzed by H-ZSM-5 differ. Toluene methylation with DMC involves full decomposition of DMC prior to methylation to form xylene isomers. In contrast, methanol is more active than DMC as the methylation reagent in toluene methylation. The stepwise and concerted paths of toluene methylation with methanol have similar intrinsic activation energies. At 773 K, the stepwise path has a higher rate constant than the concerted one. For toluene methylation with both reagents, para-xylene formation is kinetically preferred, whereas meta-xylene is the lowest-energy product. The results of our calculations agree well with experimental observations.

  • 加载中
    1. [1]

      (1) Zhu, Z. R.; Chen, Q. L.; Xie, Z. K.; Yang,W. M.; Li, C.Microporous Mesoporous Mat. 2006, 88, 16. doi: 10.1016/j.micromeso.2005.08.021

    2. [2]

      (2) Inagaki, S.; Kamino, K.; Kikuchi, E.; Matsukata, M. Appl. Catal. A: Gen. 2007, 318, 22. doi: 10.1016/j.apcata.2006.10.036

    3. [3]

      (3) Zhao, Y.; Tan,W.;Wu, H. Y.; Zhang, A. F.; Liu, M.; Li, G. M.;Wang, X. S.; Song, C. S.; Guo, X.W. Catal. Today 2011, 160,179. doi: 10.1016/j.cattod.2010.05.036

    4. [4]

      (4) Xue, B.; Li, Y. X.; Deng, L. J. Catal. Commun. 2009, 10, 1609.doi: 10.1016/j.catcom.2009.04.028

    5. [5]

      (5) Tan,W.; Zhao, Y.;Wu, H. Y.;Wang, X. S.; Guo, X.W. Acta Petrolei Sinica 2011, 27, 719. [谭伟, 赵岩, 吴宏宇, 王祥生, 郭新闻. 石油学报, 2011, 27, 719.]

    6. [6]

      (6) Liu, S. B. Acta Phys. -Chim. Sin. 2009, 25, 590. [刘述斌. 物理化学学报, 2009, 25, 590.] doi: 10.3866/PKU.WHXB20090332

    7. [7]

      (7) Sun, H.; Mumby, S. J.; Maple, J. R.; Hagler, A. T. J. Phys. Chem. 1995, 99, 5873. doi: 10.1021/j100016a022

    8. [8]

      (8) Fu, Y. C.; Zhu, H. Y.; Shen, J. Y. Thermochim. Acta 2005, 434,88. doi: 10.1016/j.tca.2005.01.021

    9. [9]

      (9) Kim,W. B.; Kim, Y. G.; Lee, J. S. Appl. Catal. A: Gen. 2000,194, 403. doi: 10.1016/S0926-860X(99)00386-5

    10. [10]

      (10) Wang,W.; Seiler, M.; Hunger, M. J. Phys. Chem. B 2001, 105,12553. doi: 10.1021/jp0129784

    11. [11]

      (11) Ivanova, I. I.; Corma, A. J. Phys. Chem. B 1997, 101, 547.doi: 10.1021/jp961468k

    12. [12]

      (12) Corma, A.; Llopis, F.; Viruela, P.; Zicovichwilson, C. J. Am. Chem. Soc. 1994, 116, 134. doi: 10.1021/ja00080a016

    13. [13]

      (13) Corma, A.; Sastre, G.; Viruela, P. M. J. Mol. Catal. A: Chem.1995, 100, 75. doi: 10.1016/1381-1169(95)00129-8

    14. [14]

      (14) Mirth, G.; Lercher, J. A. J. Phys. Chem. 1991, 95, 3736.doi: 10.1021/j100162a055

    15. [15]

      (15) Vos, A. M.; Rozanska, X.; Schoonheydt, R. A.; van Santen, R.A.; Hutschka, F.; Hafner, J. J. Am. Chem. Soc. 2001, 123, 2799.doi: 10.1021/ja001981i

    16. [16]

      (16) Maseras, F.; Morokuma, K. J. Comput. Chem. 1995, 16, 1170.

    17. [17]

      (17) Dapprich, S.; Komáromi, I.; Byun, K. S.; Morokuma, K.;Frisch, M. J. J. Mol. Struct. -Theochem 1999, 462, 1.doi: 10.1016/S0166-1280(98)00475-8

    18. [18]

      (18) Nie, X.W.; Janik, J. M.; Guo, X.W.; Song, C. S. J. Phys. Chem. C 2012, 116, 4071. doi: 10.1021/jp209337m

    19. [19]

      (19) Maihom, T.; Boekfa, B.; Sirijaraensre, J.; Nanok, T.; Probst, M.;Limtrakul, J. J. Phys. Chem. C 2009, 113, 6654. doi: 10.1021/jp809746a

    20. [20]

      (20) Olson, D. H.; Kokotailo, G. T.; Lawton, S. L.; Meier,W. M.J. Phys. Chem. 1981, 85, 2238. doi: 10.1021/j150615a020

    21. [21]

      (21) Kokotailo, G. T.; Lawton, S. L.; Olson, D. H.; Meier,W. M.Nature 1978, 272, 437. doi: 10.1038/272437a0

    22. [22]

      (22) Vankoningsveld, H.; Vanbekkum, H.; Jansen, J. C. Acta Crystallogr., Sect. B Struct. Sci. 1987, 43, 127. doi: 10.1107/S0108768187098173

    23. [23]

      (23) Zhang, J.; Zhou, D. H.; Ni, D. Chin. J. Catal. 2008, 29, 715.[张佳, 周丹红, 倪丹. 催化学报, 2008, 29, 715.]

    24. [24]

      (24) Li, J. H.; Zhou, D. H.; Ren, J. Acta Phys. -Chim. Sin. 2011, 27,1393. [李惊鸿, 周丹红, 任珏. 物理化学学报, 2011, 27,1393.] doi: 10.3866/PKU.WHXB20110631

    25. [25]

      (25) Zuo, S. Y.; Zhou, D. H.; Ren, J.;Wang, F. J. Chin. J. Catal.2012, 33, 1367. [左士颖, 周丹红, 任珏, 王凤娇. 催化学报, 2012, 33, 1367.]

    26. [26]

      (26) Rappe, A. K.; Upton, T. H. J. Am. Chem. Soc. 1992, 114, 7507.doi: 10.1021/ja00045a026

    27. [27]

      (27) Van Speybroeck, V.; Van der Mynsbrugge, J.; Vandichel, M.;Hemelsoet, K.; Lesthaeghe, D.; Ghysels, A.; Marin, B. G.;Waroquier, M. J. Am. Chem. Soc. 2011, 133, 888. doi: 10.1021/ja1073992

    28. [28]

      (28) Van der Mynsbrugge, J.; Visur, M.; Olsbye, U.; Beato, P.;Bjørgen, M.; Van Speybroeck, V.; Svelle, S. J. Catal. 2012, 292,201. doi: 10.1016/j.jcat.2012.05.015

    29. [29]

      (29) Vreven, T.; Morokuma, K. J. Comput. Chem. 2000, 21, 1419.

    30. [30]

      (30) Chai, J. D.; Head- rdon, M. Phys. Chem. Chem. Phys. 2008,10, 6615. doi: 10.1039/b810189b

    31. [31]

      (31) Frisch, M. J.; Trucks, G.W.; Schlegel, H. B.; et al. Gaussian 03,Revision A.01; Gaussian Inc.: Pittsburgh, PA, 2003.

    32. [32]

      (32) Frisch, M. J.; Trucks, G.W.; Schlegel, H. B.; et al. Gaussian 09,Revision A.02; Gaussian Inc.:Wallingford, CT, 2009.

    33. [33]

      (33) Dibenedetto, A.; Aresta, M.; Giannoccaro, P.; Pastore, C.; Papai,I.; Schubert, G. Eur. J. Inorg. Chem. 2006, 5, 908.

    34. [34]

      (34) Kirumakki, S. R.; Nagaraju, N.; Chary, K. V. R.; Narayanan, S.J. Catal. 2004, 221, 549. doi: 10.1016/j.jcat.2003.09.013

    35. [35]

      (35) Su, K.; Li, Z. H.; Cheng, B.W.; Liao, K.; Shen, D. X.;Wang, Y.F. J. Mol. Catal. A: Chem. 2010, 315, 60. doi: 10.1016/j.molcata.2009.08.027

    36. [36]

      (36) Aresta, M.; Dibenedetto, A.; Fracchiolla, E.; Giannoccaro, P.;Pastore, C.; Pápai, I.; Schubert, G. J. Org. Chem. 2005, 70,6177. doi: 10.1021/jo050392y

    37. [37]

      (37) Mazar, M. N.; Al-Hashimi, S.; Bhan, A.; Cococcioni, M.J. Phys. Chem. C 2012, 116, 19385. doi: 10.1021/jp306003e

    38. [38]

      (38) Lee, C. C.; rte, R. J.; Farneth,W. E. J. Phys. Chem. B 1997,101, 3811. doi: 10.1021/jp970711s

    39. [39]

      (39) Li, L. L.; Nie, X.W.; Song, C. S.; Guo, X.W. Acta Phys. -Chim. Sin. 2013, 29, 754. [李玲玲, 聂小娃, 宋春山, 郭新闻. 物理化学学报, 2013, 29, 754.] doi: 10.3866/PKU.WHXB201302063

    40. [40]

      (40) Zeng, Z. H., Pan, G. S. Acta Phys. -Chim. Sin. 1989, 5, 145.[曾昭槐, 潘贵生. 物理化学学报, 1989, 5, 145.] doi: 10.3866/PKU.WHXB19890204

    41. [41]

      (41) Wang,W.; Buchholz, A.; Seiler, M.; Hunger, M. J. Am. Chem. Soc. 2003, 125, 15260. doi: 10.1021/ja0304244

    42. [42]

      (42) Vos, M. A.; Nulens, L. H. K.; Proft, D. F.; Schoonheydt, A. R.;Geerlings, P. J. Phys. Chem. B 2002, 106, 2026. doi: 10.1021/jp014015a

    43. [43]

      (43) Rabiu, S.; Al-Khattaf, S. Ind. Eng. Chem. Res. 2008, 47, 39.doi: 10.1021/ie071038o

    44. [44]

      (44) Ramakrishna, M.; Subhash, B.; Musti, S. R. Ind. Eng. Chem. Res. 1991, 30, 281. doi: 10.1021/ie00050a001

    45. [45]

      (45) Odedairo, T.; Balasamy, R. J.; Al-Khattaf, S. Ind. Eng. Chem. Res. 2011, 50, 3169. doi: 10.1021/ie1018904

    46. [46]

      (46) Vinek, H.; Lercher, J. J. Mol. Catal. 1991, 64, 23. doi: 10.1016/0304-5102(91)85125-L


  • 加载中
    1. [1]

      Hao XURuopeng LIPeixia YANGAnmin LIUJie BAI . Regulation mechanism of halogen axial coordination atoms on the oxygen reduction activity of Fe-N4 site: A density functional theory study. Chinese Journal of Inorganic Chemistry, 2025, 41(4): 695-701. doi: 10.11862/CJIC.20240302

    2. [2]

      Jie ZHAOSen LIUQikang YINXiaoqing LUZhaojie WANG . Theoretical calculation of selective adsorption and separation of CO2 by alkali metal modified naphthalene/naphthalenediyne. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 515-522. doi: 10.11862/CJIC.20230385

    3. [3]

      Jie ZHAOHuili ZHANGXiaoqing LUZhaojie WANG . Theoretical calculations of CO2 capture and separation by functional groups modified 2D covalent organic framework. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 275-283. doi: 10.11862/CJIC.20240213

    4. [4]

      Meifeng Zhu Jin Cheng Kai Huang Cheng Lian Shouhong Xu Honglai Liu . Classical Density Functional Theory for Understanding Electrochemical Interface. University Chemistry, 2025, 40(3): 148-152. doi: 10.12461/PKU.DXHX202405166

    5. [5]

      Kaifu Zhang Shan Gao Bin Yang . Application of Theoretical Calculation with Fun Practice in Raman Spectroscopy Experimental Teaching. University Chemistry, 2025, 40(3): 62-67. doi: 10.12461/PKU.DXHX202404045

    6. [6]

      Xingyang LITianju LIUYang GAODandan ZHANGYong ZHOUMeng PAN . A superior methanol-to-propylene catalyst: Construction via synergistic regulation of pore structure and acidic property of high-silica ZSM-5 zeolite. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1279-1289. doi: 10.11862/CJIC.20240026

    7. [7]

      Ling Liu Haibin Wang Genrong Qiang . Curriculum Ideological and Political Design for the Comprehensive Preparation Experiment of Ethyl Benzoate Synthesized from Benzyl Alcohol. University Chemistry, 2024, 39(2): 94-98. doi: 10.3866/PKU.DXHX202304080

    8. [8]

      Maitri BhattacharjeeRekha Boruah SmritiR. N. Dutta PurkayasthaWaldemar ManiukiewiczShubhamoy ChowdhuryDebasish MaitiTamanna Akhtar . Synthesis, structural characterization, bio-activity, and density functional theory calculation on Cu(Ⅱ) complexes with hydrazone-based Schiff base ligands. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1409-1422. doi: 10.11862/CJIC.20240007

    9. [9]

      Xiaochen Zhang Fei Yu Jie Ma . 多角度数理模拟在电容去离子中的前沿应用. Acta Physico-Chimica Sinica, 2024, 40(11): 2311026-. doi: 10.3866/PKU.WHXB202311026

    10. [10]

      Weina Wang Lixia Feng Fengyi Liu Wenliang Wang . Computational Chemistry Experiments in Facilitating the Study of Organic Reaction Mechanism: A Case Study of Electrophilic Addition of HCl to Asymmetric Alkenes. University Chemistry, 2025, 40(3): 206-214. doi: 10.12461/PKU.DXHX202407022

    11. [11]

      Kai CHENFengshun WUShun XIAOJinbao ZHANGLihua ZHU . PtRu/nitrogen-doped carbon for electrocatalytic methanol oxidation and hydrogen evolution by water electrolysis. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1357-1367. doi: 10.11862/CJIC.20230350

    12. [12]

      Yongmei Liu Lisen Sun Zhen Huang Tao Tu . Curriculum-Based Ideological and Political Design for the Experiment of Methanol Oxidation to Formaldehyde Catalyzed by Electrolytic Silver. University Chemistry, 2024, 39(2): 67-71. doi: 10.3866/PKU.DXHX202308020

    13. [13]

      Wanmin Cheng Juan Du Peiwen Liu Yiyun Jiang Hong Jiang . Photoinitiated Grignard Reagent Synthesis and Experimental Improvement in Triphenylmethanol Preparation. University Chemistry, 2024, 39(5): 238-242. doi: 10.3866/PKU.DXHX202311066

    14. [14]

      Xinyu You Xin Zhang Shican Jiang Yiru Ye Lin Gu Hexun Zhou Pandong Ma Jamal Ftouni Abhishek Dutta Chowdhury . Efficacy of Ca/ZSM-5 zeolites derived from precipitated calcium carbonate in the methanol-to-olefin process. Chinese Journal of Structural Chemistry, 2024, 43(4): 100265-100265. doi: 10.1016/j.cjsc.2024.100265

    15. [15]

      Jingzhao Cheng Shiyu Gao Bei Cheng Kai Yang Wang Wang Shaowen Cao . 4-氨基-1H-咪唑-5-甲腈修饰供体-受体型氮化碳光催化剂的构建及其高效光催化产氢研究. Acta Physico-Chimica Sinica, 2024, 40(11): 2406026-. doi: 10.3866/PKU.WHXB202406026

    16. [16]

      Qingqing SHENXiangbowen DUKaicheng QIANZhikang JINZheng FANGTong WEIRenhong LI . Self-supporting Cu/α-FeOOH/foam nickel composite catalyst for efficient hydrogen production by coupling methanol oxidation and water electrolysis. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1953-1964. doi: 10.11862/CJIC.20240028

    17. [17]

      Jian Jin Jing Cheng Xueping Yang . Integration Practice of Organic Chemistry Experiment and Safety Education: Taking the Synthesis of Triphenylmethanol as an Example. University Chemistry, 2024, 39(3): 345-350. doi: 10.3866/PKU.DXHX202309010

    18. [18]

      Feng Han Fuxian Wan Ying Li Congcong Zhang Yuanhong Zhang Chengxia Miao . Comprehensive Organic Chemistry Experiment: Phosphotungstic Acid-Catalyzed Direct Conversion of Triphenylmethanol for the Synthesis of Oxime Ethers. University Chemistry, 2025, 40(3): 342-348. doi: 10.12461/PKU.DXHX202405181

    19. [19]

      Ping Song Nan Zhang Jie Wang Rui Yan Zhiqiang Wang Yingxue Jin . Experimental Teaching Design on Synthesis and Antitumor Activity Study of Cu-Pyropheophorbide-a Methyl Ester. University Chemistry, 2024, 39(6): 278-286. doi: 10.3866/PKU.DXHX202310087

    20. [20]

      Tiantian MASumei LIChengyu ZHANGLu XUYiyan BAIYunlong FUWenjuan JIHaiying YANG . Methyl-functionalized Cd-based metal-organic framework for highly sensitive electrochemical sensing of dopamine. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 725-735. doi: 10.11862/CJIC.20230351

Metrics
  • PDF Downloads(7310)
  • Abstract views(2699)
  • HTML views(106)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return