Citation: CAO Yan-Bing, LUO Liang, DU Ke, PENG Zhong-Dong, HU Guo-Rong, JIANG Feng. Synthesis and Electrochemical Properties of LiFe1-xNbxPO4/C Composite Cathode Material by Two-Step Synthesis Route[J]. Acta Physico-Chimica Sinica, ;2013, 29(07): 1507-1514. doi: 10.3866/PKU.WHXB201304231 shu

Synthesis and Electrochemical Properties of LiFe1-xNbxPO4/C Composite Cathode Material by Two-Step Synthesis Route

  • Received Date: 18 January 2013
    Available Online: 23 April 2013

    Fund Project: 国家科技支撑计划(2007BAE12B01) (2007BAE12B01) 中央高校基本科研业务费(2012QNZT018) (2012QNZT018) 中国博士后科学基金(2012M521546) (2012M521546)

  • LiFePO4/C composite was prepared by two-step synthesis route, with LiH2PO4 and FeC2O4· 2H2O as starting materials. In the process, the carbon sources polyvinyl alcohol (PVA) and glucose were added in a stepwise fashion. The well-crystallized LiFePO4/C composite with homogeneous small particles was obtained after reacting at 700℃ for 4 h. This composite had a discharge specific capacity of 157.3 mAh·g-1 at 0.1C rate and 138.4 mAh·g-1 at 1C rate. On the basis of carbon coating modification, Nb-ion-doped LiFe1-xNbxPO4/C (x=0.005, 0.01, 0.015, 0.02) composites were prepared. The optimized LiFe0.99Nb0.01PO4/C cathode displayed a discharge specific capacity 160.5 mAh·g-1 at 0.1C discharge rate, 136.0 mAh·g-1 at 5C and maintained 134.8 mAh·g-1 after 50 cycles, showing od rate properties and cycling stability. Cyclic voltammetry (CV) measurements indicated that aliovalent dopant substituting on the Fe sites can reduce the resistance of Li ion diffusion in the electrode process, increase phase transformation kinetics during cycling, and enhance the reversibility of LiFePO4 electrodes.

  • 加载中
    1. [1]

      (1) Padhi, A. K.; Nanjundaswamy, K. S.; odenough, J. B.J. Eletrochem. Soc. 1997, 144, 1188. doi: 10.1149/1.1837571

    2. [2]

      (2) Padhi, A. K.; Nanjundaswamy, K. S.; Masquelier, C.; Okada, S.; odenough, J. B. J. Electrochem. Soc. 1997, 144, 1609.

    3. [3]

      (3) odenough, J. B.; Kim, Y. Chem. Mater. 2010, 22, 587. doi: 10.1021/cm901452z

    4. [4]

      (4) Yamada, A.; Chung, S. C.; Hinokuma, K. J. J. Electrochem. Soc.2001, 148, A224.

    5. [5]

      (5) Morgan, D.; Van der Ven, A.; Ceder, G. Electrochem. Solid- State Lett. 2004, 7, A30.

    6. [6]

      (6) Fisher, C. A. J.; Hart Prieto, V. M.; Islam, M. S. Chem. Mater.2008, 20, 5907.

    7. [7]

      (7) Delacourt, C.; Poizot, P.; Levasseur, S.; Masquelier, C.Electrochem. Solid-State Lett. 2006, 9, A352.

    8. [8]

      (8) Lim, S. Y.; Yoon, C. S.; Cho, J. P. Chem. Mater. 2008, 20, 4560.doi: 10.1021/cm8006364

    9. [9]

      (9) Wang, Y. G.;Wang, Y. R.; Hosono, E.;Wang, K. X.; Zhou, H. S.Angew. Chem. Int. Edit. 2008, 47, 7461. doi: 10.1002/anie.v47:39

    10. [10]

      (10) Kang, B.; Ceder, G. Nature 2009, 458, 190.

    11. [11]

      (11) Chung, S. Y.; Bloking, J. T.; Chiang, Y. M. Nat. Mater. 2002, 1,123.

    12. [12]

      (12) Chen, Y.;Wang, Z. L.; Yu, C. Y.; Xia, D. G.;Wu, Z. Y. Acta Phys. -Chim. Sin. 2008, 24, 1498. [陈宇, 王忠丽, 于春洋,夏定国, 吴自玉. 物理化学学报, 2008, 24, 1498.] doi: 10.3866/PKU.WHXB20080829

    13. [13]

      (13) Zhang,W. J. J. Electrochem. Soc. 2010, 157, A1040.

    14. [14]

      (14) Dominko, R.; Gaberš?ek, M.; Drofenik, J.; Bele, M.; Pejovnik,S.; Jamnik, J. J. Power Sources 2003, 119 -121, 770.

    15. [15]

      (15) Yu, H. M.; Zheng,W.; Cao, G. S.; Zhao, X. B. Acta Phys. -Chim. Sin. 2009, 25, 2186. [余红明, 郑威, 曹高劭,赵新兵. 物理化学学报, 2009, 25, 2186.] doi: 10.3866/PKU.WHXB20091113

    16. [16]

      (16) Wang, Z. P.; Liu,W.;Wang, Y.; Zhao, C. S.; Zhang, S. P.; Chen,J.T.; Zhou, H. H.; Zhang, X. X. Acta Phys. -Chim. Sin. 2012, 28,2084. [王震坡, 刘文, 王悦, 赵春松, 张淑萍, 陈继涛, 周恒辉, 张新祥. 物理化学学报, 2012, 28, 2084.] doi: 10.3866/PKU.WHXB201207043

    17. [17]

      (17) Wang, D. Y.; Li, H.; Shi, S. Q.; Huang, X. J.; Chen, L. Q.Electrochim. Acta 2005, 50, 2955. doi: 10.1016/j.electacta.2004.11.045

    18. [18]

      (18) Wang, G. X.; Bewlay, S.; Needham, S.; Liu, H. K.; Liu, R. S.;Drozd, V. A.; Lee, J. F.; Chen, J. M. J. Electrochem. Soc. 2006,153, A25

    19. [19]

      (19) Maier, J.; Amin, R. J. Electrochem. Soc. 2008, 155, A339.

    20. [20]

      (20) Ning, L. J.;Wu, Y. P.; Fang, S. B.; Rahm, E.; Holze, R. J. Power Sources 2004, 133, 229. doi: 10.1016/j.jpowsour.2004.01.048

    21. [21]

      (21) Ong, C.W.; Lin, Y. K.; Chen, J. S. J. Electrochem. Soc. 2007,154, A527

    22. [22]

      (22) Zhang, P. X.;Wang, Y. Y.; Lin, M. C.; Zhang, D. Y.; Ren, X. Z.;Yuan, Q. H. J. Electrochem. Soc. 2012, 159, A402.

    23. [23]

      (23) Wang, J. J.; Sun, X. L. Energy Environ. Sci. 2012, 5, 5163. doi: 10.1039/c1ee01263k

    24. [24]

      (24) Nonglak, M.; Yu, H. K.; Scott, A. S.; Chiang, Y. M. Adv. Funct. Mater. 2009, 19, 1060. doi: 10.1002/adfm.v19:7

    25. [25]

      (25) Sun, C. S.; Zhou, Z.; Xu, Z. G.;Wang, D. G.;Wei, J. P.; Bian,X. K.; Yan, J. J. Power Sources 2009, 193, 841. doi: 10.1016/j.jpowsour.2009.03.061

    26. [26]

      (26) Yang, M. R.; Ke,W. H. J. Electrochem. Soc. 2008, 155, A729.

    27. [27]

      (27) Ma, J.; Li, B. H.; Du, H. D.; Xu, C. J.; Kang, F. Y.J. Electrochem. Soc. 2011, 158, A26.


  • 加载中
    1. [1]

      Zhenming Xu Mingbo Zheng Zhenhui Liu Duo Chen Qingsheng Liu . Experimental Design of Project-Driven Teaching in Computational Materials Science: First-Principles Calculations of the LiFePO4 Cathode Material for Lithium-Ion Batteries. University Chemistry, 2024, 39(4): 140-148. doi: 10.3866/PKU.DXHX202307022

    2. [2]

      Qingtang ZHANGXiaoyu WUZheng WANGXiaomei WANG . Performance of nano Li2FeSiO4/C cathode material co-doped by potassium and chlorine ions. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1689-1696. doi: 10.11862/CJIC.20240115

    3. [3]

      Yongqing Kuang Jie Liu Jianjun Feng Wen Yang Shuanglian Cai Ling Shi . Experimental Design for the Two-Step Synthesis of Paracetamol from 4-Hydroxyacetophenone. University Chemistry, 2024, 39(8): 331-337. doi: 10.12461/PKU.DXHX202403012

    4. [4]

      Jianbao Mei Bei Li Shu Zhang Dongdong Xiao Pu Hu Geng Zhang . Enhanced Performance of Ternary NASICON-Type Na3.5-xMn0.5V1.5-xZrx(PO4)3/C Cathodes for Sodium-Ion Batteries. Acta Physico-Chimica Sinica, 2024, 40(12): 2407023-. doi: 10.3866/PKU.WHXB202407023

    5. [5]

      Heng Chen Longhui Nie Kai Xu Yiqiong Yang Caihong Fang . 两步焙烧法制备大比表面积和结晶性增强超薄g-C3N4纳米片及其高效光催化产H2O2. Acta Physico-Chimica Sinica, 2024, 40(11): 2406019-. doi: 10.3866/PKU.WHXB202406019

    6. [6]

      Kexin Dong Chuqi Shen Ruyu Yan Yanping Liu Chunqiang Zhuang Shijie Li . Integration of Plasmonic Effect and S-Scheme Heterojunction into Ag/Ag3PO4/C3N5 Photocatalyst for Boosted Photocatalytic Levofloxacin Degradation. Acta Physico-Chimica Sinica, 2024, 40(10): 2310013-. doi: 10.3866/PKU.WHXB202310013

    7. [7]

      Wei Zhong Dan Zheng Yuanxin Ou Aiyun Meng Yaorong Su . K原子掺杂高度面间结晶的g-C3N4光催化剂及其高效H2O2光合成. Acta Physico-Chimica Sinica, 2024, 40(11): 2406005-. doi: 10.3866/PKU.WHXB202406005

    8. [8]

      Qin ZHUJiao MAZhihui QIANYuxu LUOYujiao GUOMingwu XIANGXiaofang LIUPing NINGJunming GUO . Morphological evolution and electrochemical properties of cathode material LiAl0.08Mn1.92O4 single crystal particles. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1549-1562. doi: 10.11862/CJIC.20240022

    9. [9]

      Doudou Qin Junyang Ding Chu Liang Qian Liu Ligang Feng Yang Luo Guangzhi Hu Jun Luo Xijun Liu . Addressing Challenges and Enhancing Performance of Manganese-based Cathode Materials in Aqueous Zinc-Ion Batteries. Acta Physico-Chimica Sinica, 2024, 40(10): 2310034-. doi: 10.3866/PKU.WHXB202310034

    10. [10]

      Zizheng LUWanyi SUQin SHIHonghui PANChuanqi ZHAOChengfeng HUANGJinguo PENG . Surface state behavior of W doped BiVO4 photoanode for ciprofloxacin degradation. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 591-600. doi: 10.11862/CJIC.20230225

    11. [11]

      Yan ZHAOXiaokang JIANGZhonghui LIJiaxu WANGHengwei ZHOUHai GUO . Preparation and fluorescence properties of Eu3+-doped CaLaGaO4 red-emitting phosphors. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1861-1868. doi: 10.11862/CJIC.20240242

    12. [12]

      Bingliang Li Yuying Han Dianyang Li Dandan Liu Wenbin Shang . One-Step Synthesis of Benorilate Guided by Green Chemistry Principles and in vivo Dynamic Evaluation. University Chemistry, 2024, 39(6): 342-349. doi: 10.3866/PKU.DXHX202311070

    13. [13]

      Peng ZHOUXiao CAIQingxiang MAXu LIU . Effects of Cu doping on the structure and optical properties of Au11(dppf)4Cl2 nanocluster. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1254-1260. doi: 10.11862/CJIC.20240047

    14. [14]

      Xiaoning TANGShu XIAJie LEIXingfu YANGQiuyang LUOJunnan LIUAn XUE . Fluorine-doped MnO2 with oxygen vacancy for stabilizing Zn-ion batteries. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1671-1678. doi: 10.11862/CJIC.20240149

    15. [15]

      Jianyu Qin Yuejiao An Yanfeng ZhangIn Situ Assembled ZnWO4/g-C3N4 S-Scheme Heterojunction with Nitrogen Defect for CO2 Photoreduction. Acta Physico-Chimica Sinica, 2024, 40(12): 2408002-. doi: 10.3866/PKU.WHXB202408002

    16. [16]

      Zhaomei LIUWenshi ZHONGJiaxin LIGengshen HU . Preparation of nitrogen-doped porous carbons with ultra-high surface areas for high-performance supercapacitors. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 677-685. doi: 10.11862/CJIC.20230404

    17. [17]

      Hailang JIAHongcheng LIPengcheng JIYang TENGMingyun GUAN . Preparation and performance of N-doped carbon nanotubes composite Co3O4 as oxygen reduction reaction electrocatalysts. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 693-700. doi: 10.11862/CJIC.20230402

    18. [18]

      Fan JIAWenbao XUFangbin LIUHaihua ZHANGHongbing FU . Synthesis and electroluminescence properties of Mn2+ doped quasi-two-dimensional perovskites (PEA)2PbyMn1-yBr4. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1114-1122. doi: 10.11862/CJIC.20230473

    19. [19]

      Kaihui Huang Dejun Chen Xin Zhang Rongchen Shen Peng Zhang Difa Xu Xin Li . Constructing Covalent Triazine Frameworks/N-Doped Carbon-Coated Cu2O S-Scheme Heterojunctions for Boosting Photocatalytic Hydrogen Production. Acta Physico-Chimica Sinica, 2024, 40(12): 2407020-. doi: 10.3866/PKU.WHXB202407020

    20. [20]

      Jinyi Sun Lin Ma Yanjie Xi Jing Wang . Preparation and Electrocatalytic Nitrogen Reduction Performance Study of Vanadium Nitride@Nitrogen-Doped Carbon Composite Nanomaterials: A Recommended Comprehensive Chemistry Experiment. University Chemistry, 2024, 39(4): 184-191. doi: 10.3866/PKU.DXHX202310094

Metrics
  • PDF Downloads(636)
  • Abstract views(849)
  • HTML views(1)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return