Citation:
XIE Hu-Jun, MOU Wang-Shu, LIN Fu-Rong, XU Jie-Hui, LEI Qun-Fang. Radical Scavenging Activity of Myricetin[J]. Acta Physico-Chimica Sinica,
;2013, 29(07): 1421-1432.
doi:
10.3866/PKU.WHXB201304222
-
Density functional theory (DFT) calculations have been performed to explore the molecular structure, electronic structure, and O-H bond dissociation enthalpy of myricetin. Possible antioxidation mechanisms between lipid peroxide radical CH3OO· and myricetin have been discussed. DFT calculations at the M06-2X/6-31++G(d,p) level indicated that the 4'-OH group of myricetin is the most active site on the basis of the stability of dehydrogenated myricetin radicals, O-H bond dissociation enthalpy, and hydrogen abstraction activation barrier, as well as kinetic data for myricetin determined at different temperatures. The relatively high activity of the 4'-OH site can be ascribed to weak hydrogen-bonding interactions between the oxygen radical of the reactive OH group and the adjacent OH group in the B-ring, which is retained upon ing from free myricetin to reactant complex to product according to atoms in molecule (AIM) analysis. The hydrogen-bond helps to stabilize the electronic deficiency generated on the oxygen radical during the hydrogen abstraction reaction. All calculations are in agreement with the structure-activity relationship previously established for myricetin by considering its antioxidant activity. Present calculations provide theoretical basis for the designing new antioxidants.
-
-
-
[1]
(1) Kuhnau, J. World Rev. Nutr. Diet. 1976, 24, 117.
-
[2]
(2) Miean, K. H.; Mohamed, S. J. Agric. Food Chem. 2001, 49,3106. doi: 10.1021/jf000892m
-
[3]
(3) Li, M. J.; Zhang, L. M.; Liu,W. X.; Lu,W. C. Chin. J. Chem. Phys. 2011, 24, 173.
-
[4]
(4) Rüfer, C. E.; Kulling, S. E. J. Agric. Food Chem. 2006, 54,2926. doi: 10.1021/jf053112o
-
[5]
(5) Amat, A.; Clementi, C.; De Angelis, F.; Sgamellotti, A.;Fantaccia, S. J. Phys. Chem. A 2009, 113, 15118. doi: 10.1021/jp9052538
-
[6]
(6) Horvath, C. R.; Martos, P. A.; Saxena, P. K. J. Chromatogr. A2005, 1062, 199. doi: 10.1016/j.chroma.2004.11.030
-
[7]
(7) Nenadis, N.; Sigalas, M. P. J. Phys. Chem. A 2008, 112, 12196.doi: 10.1021/jp8058905
-
[8]
(8) Rashid, U.; Anwar, F.; Moser, B. R.; Knothe, G. Bioresour. Technol. 2008, 99, 8175. doi: 10.1016/j.biortech.2008.03.066
-
[9]
(9) Gunesekaran, R.; Ubeda, A.; Alcaraz, M. J.; Jayaprakasam, R.;Nair, A. G. R. Pharmazie 1993, 48, 230.
-
[10]
(10) Mehrdad, M.; Zebardast, M.; Abedi, G.; Koupaei, M. N.;Rasouli, H.; Talebi, M. J. Aoac. Int. 2009, 92, 1035.
-
[11]
(11) Burda, S.; Oleszek,W. J. Agric. Food. Chem. 2001, 49, 2774.doi: 10.1021/jf001413m
-
[12]
(12) Mira, L.; Fernandez, M. T.; Santos, M.; Rocha, R.; Florencio,M. H.; Jennings, K. R. Free Radic. Res. 2002, 36, 1199.doi: 10.1080/1071576021000016463
-
[13]
(13) Ko, C. H.; Shen, S. C.; Lee, T. J.; Chen, Y. C. Mol. Cancer Ther.2005, 4, 281.
-
[14]
(14) Morales, P.; Haza, A. I. J. Appl. Toxicol. 2012, 32, 986.doi: 10.1002/jat.v32.12
-
[15]
(15) Rasulev, B. F.; Abdullaev, N. D.; Syrov, V. N. Leszczynski, J.QSAR Comb. Sci. 2005, 24, 1056.
-
[16]
(16) DeToma, A. S.; Choi, J. S.; Braymer, J. J.; Lim, M. H.ChemBioChem 2011, 12, 1198. doi: 10.1002/cbic.v12.8
-
[17]
(17) Delgado, M. E.; Haza, A. I.; Garcia, A.; Morales, P. Toxicolin. In Vitro 2009, 23, 1292. doi: 10.1016/j.tiv.2009.07.022
-
[18]
(18) Oyama, Y.; Fuchs, P. A.; Katayama, N.; Noda, K. Brain Res.1994, 635, 125. doi: 10.1016/0006-8993(94)91431-1
-
[19]
(19) rdon, M. H.; Roedig-Penmanm, A. Chem. Phys. Lipids 1998,97, 79. doi: 10.1016/S0009-3084(98)00098-X
-
[20]
(20) Lalas, S.; Tsaknis, J. J. Am. Oil. Chem. Soc. 2002, 79, 677.doi: 10.1007/s11746-002-0542-2
-
[21]
(21) Shahidi, F.;Wanasundara, U. Dev. Food Sci. 1995, 37A, 469.
-
[22]
(22) Robak, J.; Gryglewski, R. J. Biochem. Pharmacol. 1988, 37,837. doi: 10.1016/0006-2952(88)90169-4
-
[23]
(23) Angelone, T.; Pasqua, T.; Di Majo, D.; Quintieri, A. M.; Filice,E.; Amodio, N.; Tota, B.; Giammanco, M.; Cerra, M. C. Nutr. Metab. Cardiovas. 2011, 21, 362. doi: 10.1016/j.numecd.2009.10.011
-
[24]
(24) Wang, Z. H.; Kang, K. A.; Zhang, R.; Piao, M. J.; Jo, S. H.;Kim, J. S.; Kang, S. S.; Lee, J. S.; Park, D. H.; Hyun, J.W.Environ. Toxicol. Phar. 2010, 29, 12. doi: 10.1016/j.etap.2009.08.007
-
[25]
(25) Moser, B. R. Eur. J. Lipid Sci. Technol. 2008, 110, 1167.doi: 10.1002/ejlt.v110:12
-
[26]
(26) Justino, G. C.; Vieira, A. J. S. C. J. Mol. Model. 2010, 16, 863.doi: 10.1007/s00894-009-0583-1
-
[27]
(27) Mendoza-Wilson, A. M.; Sotelo-Mundo, R. R.; Balandran-Quintana, R. R.; Glossman-Mitnik, D.; Santiz- mez, M. A.;Garcia-Orozco, K. D. J. Mol. Struct. 2010, 981, 187.doi: 10.1016/j.molstruc.2010.08.005
-
[28]
(28) Leon-Carmona, J. R.; Galano, A. J. Phys. Chem. B 2011, 115,4538. doi: 10.1021/jp201383y
-
[29]
(29) Anouar, E.; Calliste, C. A.; Kosinova, P.; Di Meo, F.; Duroux, J.L.; Champavier, Y.; Marakchi, K.; Trouillas, P. J. Phys. Chem. A2009, 113, 13881. doi: 10.1021/jp906285b
-
[30]
(30) Sadasivam, K.; Kumaresan, R. Spectrochim. Acta A 2011, 79,282. doi: 10.1016/j.saa.2011.02.042
-
[31]
(31) Zhao, Y.; Truhlar, D. G. Theor. Chem. Acc. 2008, 120, 215.doi: 10.1007/s00214-007-0310-x
-
[32]
(32) Zhao, Y.; Truhlar, D. G. Accounts Chem. Res. 2008, 41, 157.doi: 10.1021/ar700111a
-
[33]
(33) Barone, V.; Cossi, M. J. Phys. Chem. A 1998, 102, 1995.doi: 10.1021/jp9716997
-
[34]
(34) Cossi, M.; Rega, N.; Scalmani, G.; Barone, V. J. Comput. Chem.2003, 24, 669. doi: 10.1002/jcc.10189
-
[35]
(35) Frisch, M. J.; Trucks, G..W.; Schlegel, H. B.; et al. Gaussian 09, Revision A.01; Gaussian Inc.:Wallingford, CT, 2009.
-
[36]
(36) Bader, R. F.W. Chem. Res. 1991, 91, 893.
-
[37]
(37) Bader, R. F.W. J. Phys. Chem. A 1998, 102, 7314. doi: 10.1021/jp981794v
-
[38]
(38) Biegler-Konig, F. AIM2000; University of Applied Sciences:Bielefeld, Germany.
-
[39]
(39) Eyring, H. J. Chem. Phys. 1935, 3, 107. doi: 10.1063/1.1749604
-
[40]
(40) Evans, M. G.; Polanyi, M. Trans. Faraday Soc. 1935, 31, 875.doi: 10.1039/tf9353100875
-
[41]
(41) Wigner, E. J. Chem. Phys. 1937, 5, 720.
-
[42]
(42) Russo, N.; Toscano, M.; Uccella, N. J. Agric. Food Chem.2000, 48, 3232. doi: 10.1021/jf990469h
-
[43]
(43) Bors,W.; Heller,W.; Saran, M. Methods in Enzymology;Academic Press: San Die , 1990; Vol. 186, p 343.
-
[44]
(44) Leopoldini, M.; Rondinelli, F.; Russo, N.; Toscano, M. J. Agric. Food Chem. 2010, 58, 8862. doi: 10.1021/jf101693k
-
[45]
(45) Estvez, L.; Mosquera, R. A. J. Phys. Chem. A 2007, 111, 11100.doi: 10.1021/jp074941a
-
[46]
(46) Xie, H. J.; Lei, Q. F.; Fang,W. J. Acta Chim. Sin. 2010, 68,1467.
-
[47]
(47) Markovic, Z. S.; Dimitric, J. M.; Markovic, D.; Dolicanin, C.B. Theor. Chem. Acc. 2010, 127, 69. doi: 10.1007/s00214-009-0706-x
-
[48]
(48) Sadasivam, K.; Kumaresan, R. Comput. Theor. Chem. 2011,963, 227. doi: 10.1016/j.comptc.2010.10.025
-
[49]
(49) Van Acker, S. A. B. E.; DeGroot, M. J.; Van den Berg, D. J.;Tromp, M. N. J. L.; Den Kelder, G. D. O.; Van der Vijgh,W. J.F.; Bast, A. Chem. Res. Toxicol. 1996, 9, 1305. doi: 10.1021/tx9600964
-
[50]
(50) Rice-Evans, C. A.; Miller, N. J.; Paganga, G. Free Radic. Biol. Med. 1996, 20, 933. doi: 10.1016/0891-5849(95)02227-9
-
[51]
(51) Van Acker, S. A. B. E.; Van Den Berg, D. J.; Tromp, M. N. J. L.;Griffioen, D. H.; Van Bennekom,W. P.; Van Der Vijgh,W. J. F.;Bast, A. Free Radic. Biol. Med. 1996, 20, 331. doi: 10.1016/0891-5849(95)02047-0
-
[52]
(52) Guzman, R.; Santia , C.; Sanchez, M. J. Mol. Struct. 2009,935, 110. doi: 10.1016/j.molstruc.2009.06.048
-
[53]
(53) Chiodo, S. G.; Leopoldini, M.; Russo, N.; Toscano, M. Phys. Chem. Chem. Phys. 2010, 12, 7662. doi: 10.1039/b924521a
-
[54]
(54) Li, M. J.; Li, Y. J.; Peng, C. R.; Lu,W. C. Acta Phys. -Chim. Sin. 2010, 26, 466. [李敏杰, 李亚军, 彭淳容, 陆文聪. 物理化学学报, 2010, 26, 466.] doi: 10.3866/PKU.WHXB20100230
-
[55]
(55) Wright, J. S.; Johnson, E. R.; Di Labio, G. A. J. Am. Chem. Soc.2001, 123, 1173. doi: 10.1021/ja002455u
-
[56]
(56) Trouillas, P.; Fagnere, C.; Lazzaroni, R.; Calliste, C.; Marfak,A.; Duroux, J. L. Food Chem. 2004, 88, 571. doi: 10.1016/j.foodchem.2004.02.009
-
[57]
(57) Aparicio, S. Int. J. Mol. Sci. 2010, 11, 2017. doi: 10.3390/ijms11052017
-
[58]
(58) Zhang, J. H.; Du, F. P.; Peng, B.; Lu, R. H.; Gao, H. X.; Zhou,Z. Q. J. Mol. Struct. -Theochem 2010, 955, 1. doi: 10.1016/j.theochem.2010.04.036
-
[59]
(59) Kosinova, P.; Di Meo, F.; Anouar, E. H.; Duroux, J. L.;Trouillas, P. Int. J. Quantum Chem. 2011, 11, 1131.
-
[60]
(60) Zhang, H. Y.;Wang, L. F.; Sun, Y. M. Bioorg. Med. Chem. Lett.2003, 13, 909. doi: 10.1016/S0960-894X(03)00013-1
-
[61]
(61) Zhang, I. Y.;Wu, J. M.; Luo, Y.; Xu, X. J. Comput. Chem. 2011,32, 1824. doi: 10.1002/jcc.v32.9
-
[62]
(62) Wu, J. M.; Zhang, I. Y.; Xu, X. ChemPhysChem 2010, 11, 2561.doi: 10.1002/cphc.201000273
-
[63]
(63) Alecu, I. M.; Truhlar, D. G. J. Phys. Chem. A 2011, 115, 2811.doi: 10.1021/jp110024e
-
[64]
(64) Dhaouadi, Z.; Nsan u, M.; Garrab, N.; Anouar, E. H.;Marakchi, K.; Lahmar, S. J. Mol. Struct. -Theochem 2009, 904,35. doi: 10.1016/j.theochem.2009.02.034
-
[65]
(65) Mikulski, D.; rniak, R.; Molski, M. Eur. J. Med. Chem. 2010,45, 1015. doi: 10.1016/j.ejmech.2009.11.044
-
[66]
(66) Trouillas, P.; Marsal, P.; Siri, D.; Lazzaroni, R.; Duroux, J. L.Food Chem. 2006, 97, 679. doi: 10.1016/j.foodchem.2005.05.042
-
[67]
(67) Leopoldini, M.; Pitarch, I. P.; Russo, N.; Toscano, M. J. Phys. Chem. A 2004, 108, 92. doi: 10.1021/jp035901j
-
[68]
(68) Bowater, L.; Fairhurst, S. A.; Just, V. J.; Bornemann, S. FEBS Lett. 2004, 557, 45. doi: 10.1016/S0014-5793(03)01439-X
-
[69]
(69) Lien, E. J.; Ren, S.; Bui, H. H.;Wang, R. Free Radic. Biol. Med. 1999, 26, 285. doi: 10.1016/S0891-5849(98)00190-7
-
[70]
(70) Tejero, I.; nzalez-Garcia, N.; nzalez-Lafont, A.; Lluch, J.M. J. Am. Chem. Soc. 2007, 129, 5846. doi: 10.1021/ja063766t
-
[1]
-
-
-
[1]
Jiabo Huang , Quanxin Li , Zhongyan Cao , Li Dang , Shaofei Ni . Elucidating the Mechanism of Beckmann Rearrangement Reaction Using Quantum Chemical Calculations. University Chemistry, 2025, 40(3): 153-159. doi: 10.12461/PKU.DXHX202405172
-
[2]
Ronghao Zhao , Yifan Liang , Mengyao Shi , Rongxiu Zhu , Dongju Zhang . Investigation into the Mechanism and Migratory Aptitude of Typical Pinacol Rearrangement Reactions: A Research-Oriented Computational Chemistry Experiment. University Chemistry, 2024, 39(4): 305-313. doi: 10.3866/PKU.DXHX202309101
-
[3]
Hongting Yan , Aili Feng , Rongxiu Zhu , Lei Liu , Dongju Zhang . Reexamination of the Iodine-Catalyzed Chlorination Reaction of Chlorobenzene Using Computational Chemistry Methods. University Chemistry, 2025, 40(3): 16-22. doi: 10.12461/PKU.DXHX202403010
-
[4]
Aili Feng , Xin Lu , Peng Liu , Dongju Zhang . Computational Chemistry Study of Acid-Catalyzed Esterification Reactions between Carboxylic Acids and Alcohols. University Chemistry, 2025, 40(3): 92-99. doi: 10.12461/PKU.DXHX202405072
-
[5]
Ling Fan , Meili Pang , Yeyun Zhang , Yanmei Wang , Zhenfeng Shang . Quantum Chemistry Calculation Research on the Diels-Alder Reaction of Anthracene and Maleic Anhydride: Introduction to a Computational Chemistry Experiment. University Chemistry, 2024, 39(4): 133-139. doi: 10.3866/PKU.DXHX202309024
-
[6]
Peng YUE , Liyao SHI , Jinglei CUI , Huirong ZHANG , Yanxia GUO . Effects of Ce and Mn promoters on the selective oxidation of ammonia over V2O5/TiO2 catalyst. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 293-307. doi: 10.11862/CJIC.20240210
-
[7]
Qian Huang , Zhaowei Li , Jianing Zhao , Ao Yu . Quantum Chemical Calculations Reveal the Details Below the Experimental Phenomenon. University Chemistry, 2024, 39(3): 395-400. doi: 10.3866/PKU.DXHX202309018
-
[8]
Wentao Lin , Wenfeng Wang , Yaofeng Yuan , Chunfa Xu . Concerted Nucleophilic Aromatic Substitution Reactions. University Chemistry, 2024, 39(6): 226-230. doi: 10.3866/PKU.DXHX202310095
-
[9]
Yong Wang , Yingying Zhao , Boshun Wan . Analysis of Organic Questions in the 37th Chinese Chemistry Olympiad (Preliminary). University Chemistry, 2024, 39(11): 406-416. doi: 10.12461/PKU.DXHX202403009
-
[10]
Mingyang Men , Jinghua Wu , Gaozhan Liu , Jing Zhang , Nini Zhang , Xiayin Yao . 液相法制备硫化物固体电解质及其在全固态锂电池中的应用. Acta Physico-Chimica Sinica, 2025, 41(1): 2309019-. doi: 10.3866/PKU.WHXB202309019
-
[11]
Zihan Lin , Wanzhen Lin , Fa-Jie Chen . Electrochemical Modifications of Native Peptides. University Chemistry, 2025, 40(3): 318-327. doi: 10.12461/PKU.DXHX202406089
-
[12]
Heng Zhang . Determination of All Rate Constants in the Enzyme Catalyzed Reactions Based on Michaelis-Menten Mechanism. University Chemistry, 2024, 39(4): 395-400. doi: 10.3866/PKU.DXHX202310047
-
[13]
Weina Wang , Lixia Feng , Fengyi Liu , Wenliang Wang . Computational Chemistry Experiments in Facilitating the Study of Organic Reaction Mechanism: A Case Study of Electrophilic Addition of HCl to Asymmetric Alkenes. University Chemistry, 2025, 40(3): 206-214. doi: 10.12461/PKU.DXHX202407022
-
[14]
Ji-Quan Liu , Huilin Guo , Ying Yang , Xiaohui Guo . Calculation and Discussion of Electrode Potentials in Redox Reactions of Water. University Chemistry, 2024, 39(8): 351-358. doi: 10.3866/PKU.DXHX202401031
-
[15]
Yue Zhao , Yanfei Li , Tao Xiong . Copper Hydride-Catalyzed Nucleophilic Additions of Unsaturated Hydrocarbons to Aldehydes and Ketones. University Chemistry, 2024, 39(4): 280-285. doi: 10.3866/PKU.DXHX202309001
-
[16]
Guojie Xu , Fang Yu , Yunxia Wang , Meng Sun . Introduction to Metal-Catalyzed β-Carbon Elimination Reaction of Cyclopropenones. University Chemistry, 2024, 39(8): 169-173. doi: 10.3866/PKU.DXHX202401060
-
[17]
Tingbo Wang , Yao Luo , Bingyan Hu , Ruiyuan Liu , Jing Miao , Huizhe Lu . Quantitative Computational Study on the Claisen Rearrangement Reaction of Allyl Phenyl Ethers: An Introduction to a Computational Chemistry Experiment. University Chemistry, 2024, 39(11): 278-285. doi: 10.12461/PKU.DXHX202403082
-
[18]
Yi Li , Zhaoxiang Cao , Peng Liu , Xia Wu , Dongju Zhang . Revealing the Coloration and Color Change Mechanisms of the Eriochrome Black T Indicator through Computational Chemistry and UV-Visible Absorption Spectroscopy. University Chemistry, 2025, 40(3): 132-139. doi: 10.12461/PKU.DXHX202405154
-
[19]
Cunling Ye , Xitong Zhao , Hongfang Wang , Zhike Wang . A Formula for the Calculation of Complex Concentrations Arising from Side Reactions and Its Applications. University Chemistry, 2024, 39(4): 382-386. doi: 10.3866/PKU.DXHX202310043
-
[20]
Yingchun ZHANG , Yiwei SHI , Ruijie YANG , Xin WANG , Zhiguo SONG , Min WANG . Dual ligands manganese complexes based on benzene sulfonic acid and 2, 2′-bipyridine: Structure and catalytic properties and mechanism in Mannich reaction. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1501-1510. doi: 10.11862/CJIC.20240078
-
[1]
Metrics
- PDF Downloads(698)
- Abstract views(1486)
- HTML views(66)