Citation: XIE Hu-Jun, MOU Wang-Shu, LIN Fu-Rong, XU Jie-Hui, LEI Qun-Fang. Radical Scavenging Activity of Myricetin[J]. Acta Physico-Chimica Sinica, ;2013, 29(07): 1421-1432. doi: 10.3866/PKU.WHXB201304222 shu

Radical Scavenging Activity of Myricetin

  • Received Date: 21 February 2013
    Available Online: 22 April 2013

    Fund Project: 国家自然科学基金(21203166, 21073164) (21203166, 21073164) 浙江省自然科学基金(Y4100620, LY12B04003) (Y4100620, LY12B04003)浙江省大学生创新基金(2012R408007)资助项目 (2012R408007)

  • Density functional theory (DFT) calculations have been performed to explore the molecular structure, electronic structure, and O-H bond dissociation enthalpy of myricetin. Possible antioxidation mechanisms between lipid peroxide radical CH3OO· and myricetin have been discussed. DFT calculations at the M06-2X/6-31++G(d,p) level indicated that the 4'-OH group of myricetin is the most active site on the basis of the stability of dehydrogenated myricetin radicals, O-H bond dissociation enthalpy, and hydrogen abstraction activation barrier, as well as kinetic data for myricetin determined at different temperatures. The relatively high activity of the 4'-OH site can be ascribed to weak hydrogen-bonding interactions between the oxygen radical of the reactive OH group and the adjacent OH group in the B-ring, which is retained upon ing from free myricetin to reactant complex to product according to atoms in molecule (AIM) analysis. The hydrogen-bond helps to stabilize the electronic deficiency generated on the oxygen radical during the hydrogen abstraction reaction. All calculations are in agreement with the structure-activity relationship previously established for myricetin by considering its antioxidant activity. Present calculations provide theoretical basis for the designing new antioxidants.

  • 加载中
    1. [1]

      (1) Kuhnau, J. World Rev. Nutr. Diet. 1976, 24, 117.

    2. [2]

      (2) Miean, K. H.; Mohamed, S. J. Agric. Food Chem. 2001, 49,3106. doi: 10.1021/jf000892m

    3. [3]

      (3) Li, M. J.; Zhang, L. M.; Liu,W. X.; Lu,W. C. Chin. J. Chem. Phys. 2011, 24, 173.

    4. [4]

      (4) Rüfer, C. E.; Kulling, S. E. J. Agric. Food Chem. 2006, 54,2926. doi: 10.1021/jf053112o

    5. [5]

      (5) Amat, A.; Clementi, C.; De Angelis, F.; Sgamellotti, A.;Fantaccia, S. J. Phys. Chem. A 2009, 113, 15118. doi: 10.1021/jp9052538

    6. [6]

      (6) Horvath, C. R.; Martos, P. A.; Saxena, P. K. J. Chromatogr. A2005, 1062, 199. doi: 10.1016/j.chroma.2004.11.030

    7. [7]

      (7) Nenadis, N.; Sigalas, M. P. J. Phys. Chem. A 2008, 112, 12196.doi: 10.1021/jp8058905

    8. [8]

      (8) Rashid, U.; Anwar, F.; Moser, B. R.; Knothe, G. Bioresour. Technol. 2008, 99, 8175. doi: 10.1016/j.biortech.2008.03.066

    9. [9]

      (9) Gunesekaran, R.; Ubeda, A.; Alcaraz, M. J.; Jayaprakasam, R.;Nair, A. G. R. Pharmazie 1993, 48, 230.

    10. [10]

      (10) Mehrdad, M.; Zebardast, M.; Abedi, G.; Koupaei, M. N.;Rasouli, H.; Talebi, M. J. Aoac. Int. 2009, 92, 1035.

    11. [11]

      (11) Burda, S.; Oleszek,W. J. Agric. Food. Chem. 2001, 49, 2774.doi: 10.1021/jf001413m

    12. [12]

      (12) Mira, L.; Fernandez, M. T.; Santos, M.; Rocha, R.; Florencio,M. H.; Jennings, K. R. Free Radic. Res. 2002, 36, 1199.doi: 10.1080/1071576021000016463

    13. [13]

      (13) Ko, C. H.; Shen, S. C.; Lee, T. J.; Chen, Y. C. Mol. Cancer Ther.2005, 4, 281.

    14. [14]

      (14) Morales, P.; Haza, A. I. J. Appl. Toxicol. 2012, 32, 986.doi: 10.1002/jat.v32.12

    15. [15]

      (15) Rasulev, B. F.; Abdullaev, N. D.; Syrov, V. N. Leszczynski, J.QSAR Comb. Sci. 2005, 24, 1056.

    16. [16]

      (16) DeToma, A. S.; Choi, J. S.; Braymer, J. J.; Lim, M. H.ChemBioChem 2011, 12, 1198. doi: 10.1002/cbic.v12.8

    17. [17]

      (17) Delgado, M. E.; Haza, A. I.; Garcia, A.; Morales, P. Toxicolin. In Vitro 2009, 23, 1292. doi: 10.1016/j.tiv.2009.07.022

    18. [18]

      (18) Oyama, Y.; Fuchs, P. A.; Katayama, N.; Noda, K. Brain Res.1994, 635, 125. doi: 10.1016/0006-8993(94)91431-1

    19. [19]

      (19) rdon, M. H.; Roedig-Penmanm, A. Chem. Phys. Lipids 1998,97, 79. doi: 10.1016/S0009-3084(98)00098-X

    20. [20]

      (20) Lalas, S.; Tsaknis, J. J. Am. Oil. Chem. Soc. 2002, 79, 677.doi: 10.1007/s11746-002-0542-2

    21. [21]

      (21) Shahidi, F.;Wanasundara, U. Dev. Food Sci. 1995, 37A, 469.

    22. [22]

      (22) Robak, J.; Gryglewski, R. J. Biochem. Pharmacol. 1988, 37,837. doi: 10.1016/0006-2952(88)90169-4

    23. [23]

      (23) Angelone, T.; Pasqua, T.; Di Majo, D.; Quintieri, A. M.; Filice,E.; Amodio, N.; Tota, B.; Giammanco, M.; Cerra, M. C. Nutr. Metab. Cardiovas. 2011, 21, 362. doi: 10.1016/j.numecd.2009.10.011

    24. [24]

      (24) Wang, Z. H.; Kang, K. A.; Zhang, R.; Piao, M. J.; Jo, S. H.;Kim, J. S.; Kang, S. S.; Lee, J. S.; Park, D. H.; Hyun, J.W.Environ. Toxicol. Phar. 2010, 29, 12. doi: 10.1016/j.etap.2009.08.007

    25. [25]

      (25) Moser, B. R. Eur. J. Lipid Sci. Technol. 2008, 110, 1167.doi: 10.1002/ejlt.v110:12

    26. [26]

      (26) Justino, G. C.; Vieira, A. J. S. C. J. Mol. Model. 2010, 16, 863.doi: 10.1007/s00894-009-0583-1

    27. [27]

      (27) Mendoza-Wilson, A. M.; Sotelo-Mundo, R. R.; Balandran-Quintana, R. R.; Glossman-Mitnik, D.; Santiz- mez, M. A.;Garcia-Orozco, K. D. J. Mol. Struct. 2010, 981, 187.doi: 10.1016/j.molstruc.2010.08.005

    28. [28]

      (28) Leon-Carmona, J. R.; Galano, A. J. Phys. Chem. B 2011, 115,4538. doi: 10.1021/jp201383y

    29. [29]

      (29) Anouar, E.; Calliste, C. A.; Kosinova, P.; Di Meo, F.; Duroux, J.L.; Champavier, Y.; Marakchi, K.; Trouillas, P. J. Phys. Chem. A2009, 113, 13881. doi: 10.1021/jp906285b

    30. [30]

      (30) Sadasivam, K.; Kumaresan, R. Spectrochim. Acta A 2011, 79,282. doi: 10.1016/j.saa.2011.02.042

    31. [31]

      (31) Zhao, Y.; Truhlar, D. G. Theor. Chem. Acc. 2008, 120, 215.doi: 10.1007/s00214-007-0310-x

    32. [32]

      (32) Zhao, Y.; Truhlar, D. G. Accounts Chem. Res. 2008, 41, 157.doi: 10.1021/ar700111a

    33. [33]

      (33) Barone, V.; Cossi, M. J. Phys. Chem. A 1998, 102, 1995.doi: 10.1021/jp9716997

    34. [34]

      (34) Cossi, M.; Rega, N.; Scalmani, G.; Barone, V. J. Comput. Chem.2003, 24, 669. doi: 10.1002/jcc.10189

    35. [35]

      (35) Frisch, M. J.; Trucks, G..W.; Schlegel, H. B.; et al. Gaussian 09, Revision A.01; Gaussian Inc.:Wallingford, CT, 2009.

    36. [36]

      (36) Bader, R. F.W. Chem. Res. 1991, 91, 893.

    37. [37]

      (37) Bader, R. F.W. J. Phys. Chem. A 1998, 102, 7314. doi: 10.1021/jp981794v

    38. [38]

      (38) Biegler-Konig, F. AIM2000; University of Applied Sciences:Bielefeld, Germany.

    39. [39]

      (39) Eyring, H. J. Chem. Phys. 1935, 3, 107. doi: 10.1063/1.1749604

    40. [40]

      (40) Evans, M. G.; Polanyi, M. Trans. Faraday Soc. 1935, 31, 875.doi: 10.1039/tf9353100875

    41. [41]

      (41) Wigner, E. J. Chem. Phys. 1937, 5, 720.

    42. [42]

      (42) Russo, N.; Toscano, M.; Uccella, N. J. Agric. Food Chem.2000, 48, 3232. doi: 10.1021/jf990469h

    43. [43]

      (43) Bors,W.; Heller,W.; Saran, M. Methods in Enzymology;Academic Press: San Die , 1990; Vol. 186, p 343.

    44. [44]

      (44) Leopoldini, M.; Rondinelli, F.; Russo, N.; Toscano, M. J. Agric. Food Chem. 2010, 58, 8862. doi: 10.1021/jf101693k

    45. [45]

      (45) Estvez, L.; Mosquera, R. A. J. Phys. Chem. A 2007, 111, 11100.doi: 10.1021/jp074941a

    46. [46]

      (46) Xie, H. J.; Lei, Q. F.; Fang,W. J. Acta Chim. Sin. 2010, 68,1467.

    47. [47]

      (47) Markovic, Z. S.; Dimitric, J. M.; Markovic, D.; Dolicanin, C.B. Theor. Chem. Acc. 2010, 127, 69. doi: 10.1007/s00214-009-0706-x

    48. [48]

      (48) Sadasivam, K.; Kumaresan, R. Comput. Theor. Chem. 2011,963, 227. doi: 10.1016/j.comptc.2010.10.025

    49. [49]

      (49) Van Acker, S. A. B. E.; DeGroot, M. J.; Van den Berg, D. J.;Tromp, M. N. J. L.; Den Kelder, G. D. O.; Van der Vijgh,W. J.F.; Bast, A. Chem. Res. Toxicol. 1996, 9, 1305. doi: 10.1021/tx9600964

    50. [50]

      (50) Rice-Evans, C. A.; Miller, N. J.; Paganga, G. Free Radic. Biol. Med. 1996, 20, 933. doi: 10.1016/0891-5849(95)02227-9

    51. [51]

      (51) Van Acker, S. A. B. E.; Van Den Berg, D. J.; Tromp, M. N. J. L.;Griffioen, D. H.; Van Bennekom,W. P.; Van Der Vijgh,W. J. F.;Bast, A. Free Radic. Biol. Med. 1996, 20, 331. doi: 10.1016/0891-5849(95)02047-0

    52. [52]

      (52) Guzman, R.; Santia , C.; Sanchez, M. J. Mol. Struct. 2009,935, 110. doi: 10.1016/j.molstruc.2009.06.048

    53. [53]

      (53) Chiodo, S. G.; Leopoldini, M.; Russo, N.; Toscano, M. Phys. Chem. Chem. Phys. 2010, 12, 7662. doi: 10.1039/b924521a

    54. [54]

      (54) Li, M. J.; Li, Y. J.; Peng, C. R.; Lu,W. C. Acta Phys. -Chim. Sin. 2010, 26, 466. [李敏杰, 李亚军, 彭淳容, 陆文聪. 物理化学学报, 2010, 26, 466.] doi: 10.3866/PKU.WHXB20100230

    55. [55]

      (55) Wright, J. S.; Johnson, E. R.; Di Labio, G. A. J. Am. Chem. Soc.2001, 123, 1173. doi: 10.1021/ja002455u

    56. [56]

      (56) Trouillas, P.; Fagnere, C.; Lazzaroni, R.; Calliste, C.; Marfak,A.; Duroux, J. L. Food Chem. 2004, 88, 571. doi: 10.1016/j.foodchem.2004.02.009

    57. [57]

      (57) Aparicio, S. Int. J. Mol. Sci. 2010, 11, 2017. doi: 10.3390/ijms11052017

    58. [58]

      (58) Zhang, J. H.; Du, F. P.; Peng, B.; Lu, R. H.; Gao, H. X.; Zhou,Z. Q. J. Mol. Struct. -Theochem 2010, 955, 1. doi: 10.1016/j.theochem.2010.04.036

    59. [59]

      (59) Kosinova, P.; Di Meo, F.; Anouar, E. H.; Duroux, J. L.;Trouillas, P. Int. J. Quantum Chem. 2011, 11, 1131.

    60. [60]

      (60) Zhang, H. Y.;Wang, L. F.; Sun, Y. M. Bioorg. Med. Chem. Lett.2003, 13, 909. doi: 10.1016/S0960-894X(03)00013-1

    61. [61]

      (61) Zhang, I. Y.;Wu, J. M.; Luo, Y.; Xu, X. J. Comput. Chem. 2011,32, 1824. doi: 10.1002/jcc.v32.9

    62. [62]

      (62) Wu, J. M.; Zhang, I. Y.; Xu, X. ChemPhysChem 2010, 11, 2561.doi: 10.1002/cphc.201000273

    63. [63]

      (63) Alecu, I. M.; Truhlar, D. G. J. Phys. Chem. A 2011, 115, 2811.doi: 10.1021/jp110024e

    64. [64]

      (64) Dhaouadi, Z.; Nsan u, M.; Garrab, N.; Anouar, E. H.;Marakchi, K.; Lahmar, S. J. Mol. Struct. -Theochem 2009, 904,35. doi: 10.1016/j.theochem.2009.02.034

    65. [65]

      (65) Mikulski, D.; rniak, R.; Molski, M. Eur. J. Med. Chem. 2010,45, 1015. doi: 10.1016/j.ejmech.2009.11.044

    66. [66]

      (66) Trouillas, P.; Marsal, P.; Siri, D.; Lazzaroni, R.; Duroux, J. L.Food Chem. 2006, 97, 679. doi: 10.1016/j.foodchem.2005.05.042

    67. [67]

      (67) Leopoldini, M.; Pitarch, I. P.; Russo, N.; Toscano, M. J. Phys. Chem. A 2004, 108, 92. doi: 10.1021/jp035901j

    68. [68]

      (68) Bowater, L.; Fairhurst, S. A.; Just, V. J.; Bornemann, S. FEBS Lett. 2004, 557, 45. doi: 10.1016/S0014-5793(03)01439-X

    69. [69]

      (69) Lien, E. J.; Ren, S.; Bui, H. H.;Wang, R. Free Radic. Biol. Med. 1999, 26, 285. doi: 10.1016/S0891-5849(98)00190-7

    70. [70]

      (70) Tejero, I.; nzalez-Garcia, N.; nzalez-Lafont, A.; Lluch, J.M. J. Am. Chem. Soc. 2007, 129, 5846. doi: 10.1021/ja063766t


  • 加载中
    1. [1]

      Ronghao Zhao Yifan Liang Mengyao Shi Rongxiu Zhu Dongju Zhang . Investigation into the Mechanism and Migratory Aptitude of Typical Pinacol Rearrangement Reactions: A Research-Oriented Computational Chemistry Experiment. University Chemistry, 2024, 39(4): 305-313. doi: 10.3866/PKU.DXHX202309101

    2. [2]

      Ling Fan Meili Pang Yeyun Zhang Yanmei Wang Zhenfeng Shang . Quantum Chemistry Calculation Research on the Diels-Alder Reaction of Anthracene and Maleic Anhydride: Introduction to a Computational Chemistry Experiment. University Chemistry, 2024, 39(4): 133-139. doi: 10.3866/PKU.DXHX202309024

    3. [3]

      Qian Huang Zhaowei Li Jianing Zhao Ao Yu . Quantum Chemical Calculations Reveal the Details Below the Experimental Phenomenon. University Chemistry, 2024, 39(3): 395-400. doi: 10.3866/PKU.DXHX202309018

    4. [4]

      Wentao Lin Wenfeng Wang Yaofeng Yuan Chunfa Xu . Concerted Nucleophilic Aromatic Substitution Reactions. University Chemistry, 2024, 39(6): 226-230. doi: 10.3866/PKU.DXHX202310095

    5. [5]

      Yong Wang Yingying Zhao Boshun Wan . Analysis of Organic Questions in the 37th Chinese Chemistry Olympiad (Preliminary). University Chemistry, 2024, 39(11): 406-416. doi: 10.12461/PKU.DXHX202403009

    6. [6]

      Heng Zhang . Determination of All Rate Constants in the Enzyme Catalyzed Reactions Based on Michaelis-Menten Mechanism. University Chemistry, 2024, 39(4): 395-400. doi: 10.3866/PKU.DXHX202310047

    7. [7]

      Ji-Quan Liu Huilin Guo Ying Yang Xiaohui Guo . Calculation and Discussion of Electrode Potentials in Redox Reactions of Water. University Chemistry, 2024, 39(8): 351-358. doi: 10.3866/PKU.DXHX202401031

    8. [8]

      Yue Zhao Yanfei Li Tao Xiong . Copper Hydride-Catalyzed Nucleophilic Additions of Unsaturated Hydrocarbons to Aldehydes and Ketones. University Chemistry, 2024, 39(4): 280-285. doi: 10.3866/PKU.DXHX202309001

    9. [9]

      Guojie Xu Fang Yu Yunxia Wang Meng Sun . Introduction to Metal-Catalyzed β-Carbon Elimination Reaction of Cyclopropenones. University Chemistry, 2024, 39(8): 169-173. doi: 10.3866/PKU.DXHX202401060

    10. [10]

      Tingbo Wang Yao Luo Bingyan Hu Ruiyuan Liu Jing Miao Huizhe Lu . Quantitative Computational Study on the Claisen Rearrangement Reaction of Allyl Phenyl Ethers: An Introduction to a Computational Chemistry Experiment. University Chemistry, 2024, 39(11): 278-285. doi: 10.12461/PKU.DXHX202403082

    11. [11]

      Cunling Ye Xitong Zhao Hongfang Wang Zhike Wang . A Formula for the Calculation of Complex Concentrations Arising from Side Reactions and Its Applications. University Chemistry, 2024, 39(4): 382-386. doi: 10.3866/PKU.DXHX202310043

    12. [12]

      Yingchun ZHANGYiwei SHIRuijie YANGXin WANGZhiguo SONGMin WANG . Dual ligands manganese complexes based on benzene sulfonic acid and 2, 2′-bipyridine: Structure and catalytic properties and mechanism in Mannich reaction. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1501-1510. doi: 10.11862/CJIC.20240078

    13. [13]

      Tianlong Zhang Rongling Zhang Hongsheng Tang Yan Li Hua Li . Online Monitoring and Mechanistic Analysis of 3,5-diamino-1,2,4-triazole (DAT) Synthesis via Raman Spectroscopy: A Recommendation for a Comprehensive Instrumental Analysis Experiment. University Chemistry, 2024, 39(6): 303-311. doi: 10.3866/PKU.DXHX202312006

    14. [14]

      Yiying Yang Dongju Zhang . Elucidating the Concepts of Thermodynamic Control and Kinetic Control in Chemical Reactions through Theoretical Chemistry Calculations: A Computational Chemistry Experiment on the Diels-Alder Reaction. University Chemistry, 2024, 39(3): 327-335. doi: 10.3866/PKU.DXHX202309074

    15. [15]

      Chuanming GUOKaiyang ZHANGYun WURui YAOQiang ZHAOJinping LIGuang LIU . Performance of MnO2-0.39IrOx composite oxides for water oxidation reaction in acidic media. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1135-1142. doi: 10.11862/CJIC.20230459

    16. [16]

      Tong Zhou Jun Li Zitian Wen Yitian Chen Hailing Li Zhonghong Gao Wenyun Wang Fang Liu Qing Feng Zhen Li Jinyi Yang Min Liu Wei Qi . Experiment Improvement of “Redox Reaction and Electrode Potential” Based on the New Medical Concept. University Chemistry, 2024, 39(8): 276-281. doi: 10.3866/PKU.DXHX202401005

    17. [17]

      Chunmei GUOWeihan YINJingyi SHIJianhang ZHAOYing CHENQuli FAN . Facile construction and peroxidase-like activity of single-atom platinum nanozyme. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1633-1639. doi: 10.11862/CJIC.20240162

    18. [18]

      Dan-Ying XingXiao-Dan ZhaoChuan-Shu HeBo Lai . Kinetic study and DFT calculation on the tetracycline abatement by peracetic acid. Chinese Chemical Letters, 2024, 35(9): 109436-. doi: 10.1016/j.cclet.2023.109436

    19. [19]

      Endong YANGHaoze TIANKe ZHANGYongbing LOU . Efficient oxygen evolution reaction of CuCo2O4/NiFe-layered bimetallic hydroxide core-shell nanoflower sphere arrays. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 930-940. doi: 10.11862/CJIC.20230369

    20. [20]

      Lihui Jiang Wanrong Dong Hua Yang Yongqing Xia Hongjian Peng Jun Yuan Xiaoqian Hu Zihan Zeng Yingping Zou Yiming Luo . Study on Extraction of p-Hydroxyacetophenone. University Chemistry, 2024, 39(11): 259-268. doi: 10.12461/PKU.DXHX202402056

Metrics
  • PDF Downloads(698)
  • Abstract views(1297)
  • HTML views(65)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return