Citation: YUAN Bing-Kai, CHEN Peng-Cheng, ZHANG Jun, CHENG Zhi-Hai, WANG Chen, QIU Xiao-Hui. Research Progress in Atomic Resolution Microscopy[J]. Acta Physico-Chimica Sinica, ;2013, 29(07): 1370-1384. doi: 10.3866/PKU.WHXB201304191 shu

Research Progress in Atomic Resolution Microscopy

  • Received Date: 14 January 2013
    Available Online: 19 April 2013

    Fund Project: 国家重大科学研究计划(2012CB933001) (2012CB933001)国家自然科学基金(21173058)资助 (21173058)

  • Tremendous progress has been made in non-contact atomic force microscopy (NC-AFM) recently. The spatial resolution of NC-AFM imaging and spectroscopy of individual molecules on surfaces has reached true atomic resolution and bond differentiation level. Combination of NC-AFM with other scanning probe techniques can open a new way for materials, physics, chemistry, and biochemistry studies. In this review, we first introduce the basic principle of NC-AFM and qPlus sensor. The interaction force at atomic scale and precise measurement of short-range force are discussed. We summarize the recent advances in structural determination of organic molecules, chemical identification, electronic structure, and atomic manipulation at the atomic scale. In addition, we also discuss the application of Kelvin probe force microscopy (KPFM) in measurement of local contact potential difference (LCPD). Finally, perspectives and challenges in NC-AFM techniques are presented.

  • 加载中
    1. [1]

      (1) Binnig, G.; Rohrer, H.; Gerber, C.;Weibel, E. Phys. Rev. Lett.1982, 49, 57. doi: 10.1103/PhysRevLett.49.57

    2. [2]

      (2) Teague, E. C. Bull. Am. Phys. Soc. 1978, 23, 290.

    3. [3]

      (3) Coombs, J. H.; Pethica, J. B. IBM J. Res. Dev. 1986, 30, 455.doi: 10.1147/rd.305.0455

    4. [4]

      (4) Binnig, G.; Quate, C. F.; Gerber, C. Phys. Rev. Lett. 1986, 56,930. doi: 10.1103/PhysRevLett.56.930

    5. [5]

      (5) García, R.; Pérez, R. Surf. Sci. Rep. 2002, 47, 197. doi: 10.1016/S0167-5729(02)00077-8

    6. [6]

      (6) Martin, Y.;Williams, C. C.;Wickramasinghe, H. K. J. Appl.Phys. 1987, 61, 4723. doi: 10.1063/1.338807

    7. [7]

      (7) Zhong, Q.; Inniss, D.; Kjoller, K.; Elings, V. B. Surf. Sci. Lett.1993, 290, L688.

    8. [8]

      (8) Albrecht, T. R.; Grütter, P.; Horne, D.; Rugar, D. J. Appl. Phys.1991, 69, 668. doi: 10.1063/1.347347

    9. [9]

      (9) Gross, L. Nat. Chem. 2011, 3, 273. doi: 10.1038/nchem.1008

    10. [10]

      (10) Gross, L.; Mohn, F.; Moll, N.; Schuler, B.; Criado, A.; Guitián,E.; Peña, D.; urdon, A.; Meyer, G. Science 2012, 337, 1326.doi: 10.1126/science.1225621

    11. [11]

      (11) Baykara, M. Z.; Schwendemann, T. C.; Altman, E. I.; Schwarz,U. D. Adv. Mater. 2010, 22, 2838. doi: 10.1002/adma.200903909

    12. [12]

      (12) Mohn, F.; Gross, L.; Moll, N.; Meyer, G. Nat. Nanotechnol.2012, 7, 227. doi: 10.1038/nnano.2012.20

    13. [13]

      (13) Melitz,W.; Shen, J.; Kummel, A. C.; Lee, S. Surf. Sci. Rep.2011, 66, 1. doi: 10.1016/j.surfrep.2010.10.001

    14. [14]

      (14) Barth, C.; Foster, A. S.; Henry, C. R.; Shluger, A. L. Adv. Mater.2011, 23, 477. doi: 10.1002/adma.v23.4

    15. [15]

      (15) Giessibl, F. J. Rev. Mod. Phys. 2003, 75, 949. doi: 10.1103/RevModPhys.75.949

    16. [16]

      (16) Pérez, R.; Štich, I.; Payne, M. C.; Terakura, K. Phys. Rev. B1998, 58, 10835. doi: 10.1103/PhysRevB.58.10835

    17. [17]

      (17) Livshits, A. I.; Shluger, A. L.; Rohl, A. L.; Foster, A. S. Phys.Rev. B 1999, 59, 2436. doi: 10.1103/PhysRevB.59.2436

    18. [18]

      (18) Moll, N.; Gross, L.; Mohn, F.; Curioni, A.; Meyer, G. N. J.Phys. 2010, 12, 125020. doi: 10.1088/1367-2630/12/12/125020

    19. [19]

      (19) Moll, N.; Gross, L.; Mohn, F.; Curioni, A.; Meyer, G. N. J.Phys. 2012, 14, 083023. doi: 10.1088/1367-2630/14/8/083023

    20. [20]

      (20) Custance, Ó.; Oyabu, N.; Sugimoto, Y. Force Spectroscopy onSemiconductor Surfaces. In Noncontact Atomic ForceMicroscopy; Morita, S., Giessibl, F. J.,Wiesendanger, R. Eds.;Springer: Berlin, 2009; Vol. 2, pp 31-68.

    21. [21]

      (21) Giessibl, F. J. Materials Today 2005, 8, 32.

    22. [22]

      (22) Torbrugge, S.; Schaff, O.; Rychen, J. J. Vac. Sci. Technol. B2010, 28, C4E12.

    23. [23]

      (23) An, T.; Nishio, T.; Eguchi, T.; Ono, M.; Nomura, A.; Akiyama,K.; Hasegawa, Y. Rev. Sci. Instrum. 2008, 79, 033703.doi: 10.1063/1.2830937

    24. [24]

      (24) Giessibl, F. J. Appl. Phys. Lett. 1998, 73, 3956. doi: 10.1063/1.122948

    25. [25]

      (25) Heyde, M.; Kulawik, M.; Rust, H. P.; Freund, H. J. Rev. Sci.Instrum. 2004, 75, 2446. doi: 10.1063/1.1765753

    26. [26]

      (26) Giessibl, F. J.; Pielmeier, F.; Eguchi, T.; An, T.; Hasegawa, Y.Phys. Rev. B 2011, 84, 125409.

    27. [27]

      (27) Giessibl, F. J. Principles and Applications of the qPlus Sensor.In Noncontact Atomic Force Microscopy; Morita, S., Giessibl,F. J.,Wiesendanger, R. Eds.; Springer: Berlin, 2009; Vol. 2, pp121-142.

    28. [28]

      (28) Sader, J. E.; Jarvis, S. P. Appl. Phys. Lett. 2004, 84, 1801.doi: 10.1063/1.1667267

    29. [29]

      (29) Hamaker, H. C. Physica 1937, 4, 1058. doi: 10.1016/S0031-8914(37)80203-7

    30. [30]

      (30) Israelachvili, J. Intermolecular and Surface Forces, 3rd ed.;Academic Press: San Die , 2011.

    31. [31]

      (31) Argento, C.; French, R. H. J. Appl. Phys. 1996, 80, 6081.doi: 10.1063/1.363680

    32. [32]

      (32) Ruschmeier, K.; Schirmeisen, A.; Hoffmann, R. Phys. Rev. Lett.2008, 101, 156102. doi: 10.1103/PhysRevLett.101.156102

    33. [33]

      (33) Such, B.; Glatzel, T.; Kawai, S.; Koch, S.; Meyer, E. J. Vac. Sci.Technol. B 2010, 28, C4B1.

    34. [34]

      (34) Kawai, S.; Glatzel, T.; Koch, S.; Baratoff, A.; Meyer, E. Phys.Rev. B 2011, 83, 035421. doi: 10.1103/PhysRevB.83.035421

    35. [35]

      (35) Sun, Z. X.; Boneschanscher, M. P.; Swart, I.; Vanmaekelbergh,D.; Liljeroth, P. Phys. Rev. Lett. 2011, 106, 046104. doi: 10.1103/PhysRevLett.106.046104

    36. [36]

      (36) Fremy, S.; Kawai, S.; Pawlak, R.; Glatzel, T.; Baratoff, A.;Meyer, E. Nanotechnology 2012, 23, 055401. doi: 10.1088/0957-4484/23/5/055401

    37. [37]

      (37) Albers, B. J.; Schwendemann, T. C.; Baykara, M. Z.; Pilet, N.;Liebmann, M.; Altman, E. I.; Schwarz, U. D. Nanotechnology2009, 20, 264002. doi: 10.1088/0957-4484/20/26/264002

    38. [38]

      (38) Albers, B. J.; Schwendemann, T. C.; Baykara, M. Z.; Pilet, N.;Liebmann, M.; Altman, E. I.; Schwarz, U. D. Nat. Nanotechnol.2009, 4, 307. doi: 10.1038/nnano.2009.57

    39. [39]

      (39) Weiss, C.;Wagner, C.; Temirov, R.; Tautz, F. S. J. Am. Chem.Soc. 2010, 132, 11864. doi: 10.1021/ja104332t

    40. [40]

      (40) Temirov, R.; Soubatch, S.; Neucheva, O.; Lassise, A. C.; Tautz,F. S. N. J. Phys. 2008, 10, 053012. doi: 10.1088/1367-2630/10/5/053012

    41. [41]

      (41) Weiss, C.;Wagner, C.; Kleimann, C.; Rohlfing, M.; Tautz, F. S.;Temirov, R. Phys. Rev. Lett. 2010, 105, 086103. doi: 10.1103/PhysRevLett.105.086103

    42. [42]

      (42) Kichin, G.;Weiss, C.;Wagner, C.; Tautz, F. S.; Temirov, R.J. Am. Chem. Soc. 2011, 133, 16847. doi: 10.1021/ja204624g

    43. [43]

      (43) Giessibl, F. J. Science 1995, 267, 68. doi: 10.1126/science.267.5194.68

    44. [44]

      (44) Noncontact Atomic Force Microscopy; Morita, S.,Wiesendanger, R., Meyer, E. Eds.; Springer: Berlin, 2002; Vol. 1.

    45. [45]

      (45) Morita, S. Introduction. In Noncontact Atomic ForceMicroscopy; Morita, S., Giessibl, F. J.,Wiesendanger, R. Eds.;Springer: Berlin, 2009; Vol. 2; pp 1-13.

    46. [46]

      (46) Giessibl, F. J.; Hembacher, S.; Bielefeldt, H.; Mannhart, J.Science 2000, 289, 422. doi: 10.1126/science.289.5478.422

    47. [47]

      (47) Hembacher, S.; Giessibl, F. J.; Mannhart, J. Science 2004, 305,380. doi: 10.1126/science.1099730

    48. [48]

      (48) Gross, L.; Mohn, F.; Moll, N.; Liljeroth, P.; Meyer, G. Science2009, 325, 1110. doi: 10.1126/science.1176210

    49. [49]

      (49) Pawlak, R.; Kawai, S.; Fremy, S.; Glatzel, T.; Meyer, E. ACSNano 2011, 5, 6349. doi: 10.1021/nn201462g

    50. [50]

      (50) Pawlak, R.; Kawai, S.; Fremy, S.; Glatzel, T.; Meyer, E. J. Phys.Condes. Matter 2012, 24, 084005. doi: 10.1088/0953-8984/24/8/084005

    51. [51]

      (51) Boneschanscher, M. P.; van der Lit, J.; Sun, Z.; Swart, I.;Liljeroth, P.; Vanmaekelbergh, D. ACS Nano 2012, 6, 10216.doi: 10.1021/nn3040155

    52. [52]

      (52) Pérez, R. Science 2012, 337, 1305. doi: 10.1126/science.1227726

    53. [53]

      (53) Gross, L.; Mohn, F.; Moll, N.; Meyer, G.; Ebel, R.; Abdel-Mageed,W. M.; Jaspars, M. Nat. Chem. 2010, 2, 821.doi: 10.1038/nchem.765

    54. [54]

      (54) Welker, J.; Giessibl, F. J. Science 2012, 336, 444. doi: 10.1126/science.1219850

    55. [55]

      (55) Mohn, F.; Repp, J.; Gross, L.; Meyer, G.; Dyer, M. S.; Persson,M. Phys. Rev. Lett. 2010, 105, 266102. doi: 10.1103/PhysRevLett.105.266102

    56. [56]

      (56) Pavliek, N.; Fleury, B.; Neu, M.; Niedenführ, J.; Herranz-Lancho, C.; Ruben, M.; Repp, J. Phys. Rev. Lett. 2012, 108,086101. doi: 10.1103/PhysRevLett.108.086101

    57. [57]

      (57) Stipe, B. C.; Rezaei, M. A.; Ho,W. Science 1998, 280, 1732.doi: 10.1126/science.280.5370.1732

    58. [58]

      (58) Setvín, M.; Mutombo, P.; Ondrácek, M.; Majzik, Z.; Švec, M.;Cháb, V.; Oštádal, I.; Sobotík, P.; Jelínek, P. ACS Nano 2012,6, 6969. doi: 10.1021/nn301996k

    59. [59]

      (59) Sugimoto, Y.; Pou, P.; Abe, M.; Jelinek, P.; Perez, R.; Morita, S.;Custance, Ó. Nature 2007, 446, 64. doi: 10.1038/nature05530

    60. [60]

      (60) Hoffmann, R.; Kantorovich, L. N.; Baratoff, A.; Hug, H. J.;Güntherodt, H. J. Phys. Rev. Lett. 2004, 92, 146103.doi: 10.1103/PhysRevLett.92.146103

    61. [61]

      (61) Lantz, M. A.; Hoffmann, R.; Foster, A. S.; Baratoff, A.; Hug, H.J.; Hidber, H. R.; Güntherodt, H. J. Phys. Rev. B 2006, 74,245426. doi: 10.1103/PhysRevB.74.245426

    62. [62]

      (62) Foster, A. S.; Barth, C.; Henry, C. R. Phys. Rev. Lett. 2009, 102,256103. doi: 10.1103/PhysRevLett.102.256103

    63. [63]

      (63) Hoffmann, R.;Weiner, D.; Schirmeisen, A.; Foster, A. S. Phys.Rev. B 2009, 80, 115426. doi: 10.1103/PhysRevB.80.115426

    64. [64]

      (64) Lantz, M. A.; Hug, H. J.; Hoffmann, R.; van Schendel, P. J. A.;Kappenberger, P.; Martin, S.; Baratoff, A.; Güntherodt, H. J.Science 2001, 291, 2580. doi: 10.1126/science.1057824

    65. [65]

      (65) Guo, C. S.; Van Hove, M. A.; Zhang, R. Q.; Minot, C. Langmuir2010, 26, 16271. doi: 10.1021/la101317s

    66. [66]

      (66) Eigler, D. M.; Schweizer, E. K. Nature 1990, 344, 524.doi: 10.1038/344524a0

    67. [67]

      (67) Bartels, L.; Meyer, G.; Rieder, K. H. Phys. Rev. Lett. 1997, 79,697. doi: 10.1103/PhysRevLett.79.697

    68. [68]

      (68) Bartels, L.; Meyer, G.; Rieder, K. H. Appl. Phys. Lett. 1997, 71,213. doi: 10.1063/1.119503

    69. [69]

      (69) Eigler, D. M.; Lutz, C. P.; Rudge,W. E. Nature 1991, 352, 600.doi: 10.1038/352600a0

    70. [70]

      (70) Crommie, M. F.; Lutz, C. P.; Eigler, D. M. Science 1993, 262,218. doi: 10.1126/science.262.5131.218

    71. [71]

      (71) Yamachika, R.; Grobis, M.;Wachowiak, A.; Crommie, M. F.Science 2004, 304, 281. doi: 10.1126/science.1095069

    72. [72]

      (72) Custance, Ó.; Pérez, R.; Morita, S. Nat. Nanotechnol. 2009, 4,803. doi: 10.1038/nnano.2009.347

    73. [73]

      (73) Tseng, A. A. Nano Today 2011, 6, 493. doi: 10.1016/j.nantod.2011.08.003

    74. [74]

      (74) Oyabu, N.; Custance, Ó.; Yi, I.; Sugawara, Y.; Morita, S. Phys.Rev. Lett. 2003, 90, 176102. doi: 10.1103/PhysRevLett.90.176102

    75. [75]

      (75) Sugimoto, Y.; Jelinek, P.; Pou, P.; Abe, M.; Morita, S.; Custance,Ó.; Pérez, R. Phys. Rev. Lett. 2007, 98, 106104. doi: 10.1103/PhysRevLett.98.106104

    76. [76]

      (76) Oyabu, N.; Sugimoto, Y.; Abe, M.; Custance, Ó.; Morita, S.Nanotechnology 2005, 16, S112.

    77. [77]

      (77) Sugimoto, Y.; Abe, M.; Hirayama, S.; Oyabu, N.; Custance, Ó.;Morita, S. Nat. Mater. 2005, 4, 156. doi: 10.1038/nmat1297

    78. [78]

      (78) Sugimoto, Y.; Custance, Ó.; Abe, M.; Morita, S. e-J. Surf. Sci.Nanotech. 2006, 4, 376. doi: 10.1380/ejssnt.2006.376

    79. [79]

      (79) Sugimoto, Y.; Pou, P.; Custance, Ó.; Jelinek, P.; Abe, M.; Pérez,R.; Morita, S. Science 2008, 322, 413. doi: 10.1126/science.1160601

    80. [80]

      (80) Swart, I.; Sonnleitner, T.; Niedenführ, J.; Repp, J. Nano Lett.2012, 12, 1070. doi: 10.1021/nl204322r

    81. [81]

      (81) Hirth, S.; Ostendorf, F.; Reichling, M. Nanotechnology 2006,17, S148.

    82. [82]

      (82) Nishi, R.; Miyagawa, D.; Seino, Y.; Yi, I.; Morita, S.Nanotechnology 2006, 17, S142.

    83. [83]

      (83) Yi, I.; Nishi, R.; Abe, M.; Sugimoto, Y.; Morita, S. Jpn. J. Appl.Phys. Lett. 2011, 50, 015201. doi: 10.1143/JJAP.50.015201

    84. [84]

      (84) Ternes, M.; Lutz, C. P.; Hirjibehedin, C. F.; Giessibl, F. J.;Heinrich, A. J. Science 2008, 319, 1066. doi: 10.1126/science.1150288

    85. [85]

      (85) Mao, H. Q.; Li, N.; Chen, X.; Xue, Q. K. J. Phys. Condes.Matter 2012, 24, 084004. doi: 10.1088/0953-8984/24/8/084004

    86. [86]

      (86) Fournier, N.;Wagner, C.;Weiss, C.; Temirov, R.; Tautz, F. S.Phys. Rev. B 2011, 84, 035435. doi: 10.1103/PhysRevB.84.035435

    87. [87]

      (87) Wagner, C.; Fournier, N.; Tautz, F. S.; Temirov, R. Phys. Rev.Lett. 2012, 109, 076102. doi: 10.1103/PhysRevLett.109.076102

    88. [88]

      (88) Pawlak, R.; Fremy, S.; Kawai, S.; Glatzel, T.; Fang, H.; Fendt,L. A.; Diederich, F.; Meyer, E. ACS Nano 2012, 6, 6318.doi: 10.1021/nn301774d

    89. [89]

      (89) Zhao, J.W.; Liu, H. M.; Ni,W. B.; Guo, Y.; Yin, X. ActaPhys. -Chim. Sin. 2009, 25, 1472. [赵建伟, 刘洪梅, 倪文彬,郭彦, 尹星. 物理化学学报, 2009, 25, 1472.] doi: 10.3866/PKU.WHXB20090744

    90. [90]

      (90) Ai, Y.; Zhang, H. L. Acta Phys. -Chim. Sin. 2012, 28, 2237.[艾勇, 张浩力. 物理化学学报, 2012, 28, 2237.]doi: 10.3866/PKU.WHXB201209102

    91. [91]

      (91) Rubio-Bollinger, G.; Joyez, P.; Agraït, N. Phys. Rev. Lett.2004, 93, 116803. doi: 10.1103/PhysRevLett.93.116803

    92. [92]

      (92) Schirmeisen, A.; Cross, G.; Stalder, A.; Grütter, P.; Dürig, U.N. J. Phys. 2000, 2, 29. doi: 10.1088/1367-2630/2/1/329

    93. [93]

      (93) Sun, Y.; Mortensen, H.; Schär, S.; Lucier, A. S.; Miyahara, Y.;Grütter, P.; Hofer,W. Phys. Rev. B 2005, 71, 193407.doi: 10.1103/PhysRevB.71.193407

    94. [94]

      (94) Hembacher, S.; Giessibl, F. J.; Mannhart, J.; Quate, C. F. Phys.Rev. Lett. 2005, 94, 056101. doi: 10.1103/PhysRevLett.94.056101

    95. [95]

      (95) Chen, C. J. Nanotechnology 2005, 16, S27.

    96. [96]

      (96) Hofer,W. A.; Fisher, A. J. Phys. Rev. Lett. 2003, 91, 036803.doi: 10.1103/PhysRevLett.91.036803

    97. [97]

      (97) Sawada, D.; Sugimoto, Y.; Morita, K. I.; Abe, M.; Morita, S.Appl. Phys. Lett. 2009, 94, 173117. doi: 10.1063/1.3127503

    98. [98]

      (98) Ternes, M.; nzález, C.; Lutz, C. P.; Hapala, P.; Giessibl, F.J.; Jelínek, P.; Heinrich, A. J. Phys. Rev. Lett. 2011, 106,016802. doi: 10.1103/PhysRevLett.106.016802

    99. [99]

      (99) Majzik, Z.; Setvín, M.; Bettac, A.; Feltz, A.; Cháb, V.; Jelínek,P. Beilstein J. Nanotechnol. 2012, 3, 249. doi: 10.3762/bjnano.3.28

    100. [100]

      (100) Hauptmann, N.; Mohn, F.; Gross, L.; Meyer, G.; Frederiksen,T.; Berndt, R. N. J. Phys. 2012, 14, 073032. doi: 10.1088/1367-2630/14/7/073032

    101. [101]

      (101) Jelínek, P.; Švec, M.; Pou, P.; Pérez, R.; Cháb, V. Phys. Rev.Lett. 2008, 101, 176101. doi: 10.1103/PhysRevLett.101.176101

    102. [102]

      (102) Schull, G.; Frederiksen, T.; Brandbyge, M.; Berndt, R. Phys.Rev. Lett. 2009, 103, 206803. doi: 10.1103/PhysRevLett.103.206803

    103. [103]

      (103) Schull, G.; Dappe, Y. J.; nzález, C. S.; Bulou, H.; Berndt, R.Nano Lett. 2011, 11, 3142. doi: 10.1021/nl201185y

    104. [104]

      (104) Sweetman, A.; Jarvis, S.; Danza, R.; Bamidele, J.;Gan padhyay, S.; Shaw, G. A.; Kantorovich, L.; Moriarty, P.Phys. Rev. Lett. 2011, 106, 136101. doi: 10.1103/PhysRevLett.106.136101

    105. [105]

      (105) Nonnenmacher, M.; O'Boyle, M. P.;Wickramasinghe, H. K.Appl. Phys. Lett. 1991, 58, 2921. doi: 10.1063/1.105227

    106. [106]

      (106) Sadewasser, S.; Jelinek, P.; Fang, C. K.; Custance, Ó.; Yamada,Y.; Sugimoto, Y.; Abe, M.; Morita, S. Phys. Rev. Lett. 2009,103, 266103. doi: 10.1103/PhysRevLett.103.266103

    107. [107]

      (107) König, T.; Heinke, L.; Simon, G. H.; Heyde, M. Phys. Rev. B2011, 83, 195435. doi: 10.1103/PhysRevB.83.195435

    108. [108]

      (108) Küppers, J.;Wandelt, K.; Ertl, G. Phys. Rev. Lett. 1979, 43,928. doi: 10.1103/PhysRevLett.43.928

    109. [109]

      (109) Wandelt, K. Appl. Surf. Sci. 1997, 111, 1. doi: 10.1016/S0169-4332(96)00692-7

    110. [110]

      (110) Glatzel, T. Measuring Atomic-Scale Variations of theElectrostatic Force. In Kelvin Probe Force Microscopy;Sadewasser, S., Glatzel, T. Eds.; Springer: Berlin, 2012; pp289-327.

    111. [111]

      (111) Gross, L.; Mohn, F.; Liljeroth, P.; Repp, J.; Giessibl, F. J.;Meyer, G. Science 2009, 324, 1428. doi: 10.1126/science.1172273

    112. [112]

      (112) Liljeroth, P.; Repp, J.; Meyer, G. Science 2007, 317, 1203.doi: 10.1126/science.1144366

    113. [113]

      (113) Leoni, T.; Guillermet, O.;Walch, H.; Langlais, V.;Scheuermann, A.; Bonvoisin, J.; Gauthier, S. Phys. Rev. Lett.2011, 106, 216103. doi: 10.1103/PhysRevLett.106.216103

    114. [114]

      (114) Walch, H.; Leoni, T.; Guillermet, O.; Langlais, V.;Scheuermann, A.; Bonvoisin, J.; Gauthier, S. Phys. Rev. B2012, 86, 075423. doi: 10.1103/PhysRevB.86.075423

    115. [115]

      (115) König, T.; Simon, G. H.; Heinke, L.; Lichtenstein, L.; Heyde,M. Beilstein J. Nanotechnol. 2011, 2, 1. doi: 10.3762/bjnano.2.1

    116. [116]

      (116) König, T.; Simon, G. H.; Rust, H. P.; Pacchioni, G.; Heyde,M.; Freund, H. J. J. Am. Chem. Soc. 2009, 131, 17544.doi: 10.1021/ja908049n

    117. [117]

      (117) Heinke, L.; Lichtenstein, L.; Simon, G. H.; König, T.; Heyde,M.; Freund, H. J. ChemPhysChem 2010, 11, 2085.doi: 10.1002/cphc.v11:10

    118. [118]

      (118) Nikiforov, M. P.; Zerweck, U.; Milde, P.; Loppacher, C.; Park,T. H.; Uyeda, H. T.; Therien, M. J.; Eng, L.; Bonnell, D. NanoLett. 2008, 8, 110. doi: 10.1021/nl072175d

    119. [119]

      (119) Ichii, T.; Fukuma, T.; Yoda, T.; Kobayashi, K.; Matsushige, K.;Yamada, H. J. Appl. Phys. 2010, 107, 024315. doi: 10.1063/1.3284094

    120. [120]

      (120) Barth, C.; Pakarinen, O. H.; Foster, A. S.; Henry, C. R.Nanotechnology 2006, 17, S128.

    121. [121]

      (121) Loth, S.; Etzkorn, M.; Lutz, C. P.; Eigler, D. M.; Heinrich, A. J.Science 2010, 329, 1628. doi: 10.1126/science.1191688


  • 加载中
    1. [1]

      Zhenming Xu Mingbo Zheng Zhenhui Liu Duo Chen Qingsheng Liu . Experimental Design of Project-Driven Teaching in Computational Materials Science: First-Principles Calculations of the LiFePO4 Cathode Material for Lithium-Ion Batteries. University Chemistry, 2024, 39(4): 140-148. doi: 10.3866/PKU.DXHX202307022

    2. [2]

      Jiarong Feng Yejie Duan Chu Chu Dezhen Xie Qiu'e Cao Peng Liu . Preparation and Application of a Streptomycin Molecularly Imprinted Electrochemical Sensor: A Suggested Comprehensive Analytical Chemical Experiment. University Chemistry, 2024, 39(8): 295-305. doi: 10.3866/PKU.DXHX202401016

    3. [3]

      Wenyan Dan Weijie Li Xiaogang Wang . The Technical Analysis of Visual Software ShelXle for Refinement of Small Molecular Crystal Structure. University Chemistry, 2024, 39(3): 63-69. doi: 10.3866/PKU.DXHX202302060

    4. [4]

      Guoxian Zhu Jing Chen Rongkai Pan . Enhancing the Teaching Quality of Atomic Structure: Insights and Strategies. University Chemistry, 2024, 39(3): 376-383. doi: 10.3866/PKU.DXHX202305027

    5. [5]

      Jin Jia Shangda Jiang . Is the z Axis Special in Atomic Structure?. University Chemistry, 2024, 39(6): 400-404. doi: 10.12461/PKU.DXHX202403091

    6. [6]

      Tianyun Chen Ruilin Xiao Xinsheng Gu Yunyi Shao Qiujun Lu . Synthesis, Crystal Structure, and Mechanoluminescence Properties of Lanthanide-Based Organometallic Complexes. University Chemistry, 2024, 39(5): 363-370. doi: 10.3866/PKU.DXHX202312017

    7. [7]

      Wei Li Guoqiang Feng Ze Chang . Teaching Reform of X-ray Diffraction Using Synchrotron Radiation in Materials Chemistry. University Chemistry, 2024, 39(3): 29-35. doi: 10.3866/PKU.DXHX202308060

    8. [8]

      Dongxue Han Huiliang Sun Li Niu . Virtual Reality Technology for Safe and Green University Chemistry Experimental Education. University Chemistry, 2024, 39(8): 191-196. doi: 10.3866/PKU.DXHX202312055

    9. [9]

      Jinlong YANWeina WUYuan WANG . A simple Schiff base probe for the fluorescent turn-on detection of hypochlorite and its biological imaging application. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1653-1660. doi: 10.11862/CJIC.20240154

    10. [10]

      Haiping Wang . A Streamlined Method for Drawing Lewis Structures Using the Valence State of Outer Atoms. University Chemistry, 2024, 39(8): 383-388. doi: 10.12461/PKU.DXHX202401073

    11. [11]

      Hui Liu Shupeng Zhang Yuntian Zhang Wei Dong Yuji Liu Bingxin Deng Dongping Chen Yongxing Tang . Research on the Application of Virtual Reality (VR) Technology in the Teaching of Organic Chemistry. University Chemistry, 2024, 39(8): 64-71. doi: 10.3866/PKU.DXHX202312028

    12. [12]

      Wenliang Wang Weina Wang Sufan Wang Tian Sheng Tao Zhou Nan Wei . “Schrödinger Equation – Approximate Models – Core Concepts – Simple Applications”: Constructing a Logical Framework and Knowledge Graph of Atom and Molecule Structures. University Chemistry, 2024, 39(8): 338-343. doi: 10.3866/PKU.DXHX202312084

    13. [13]

      Tengjiao Wang Tian Cheng Rongjun Liu Zeyi Wang Yuxuan Qiao An Wang Peng Li . Conductive Hydrogel-based Flexible Electronic System: Innovative Experimental Design in Flexible Electronics. University Chemistry, 2024, 39(4): 286-295. doi: 10.3866/PKU.DXHX202309094

    14. [14]

      Hao Zhao Zhen Gao Weihong Li . Practice and Exploration of the Construction of Experimental Technician Teams of Universities in the New Period. University Chemistry, 2024, 39(4): 7-12. doi: 10.3866/PKU.DXHX202310122

    15. [15]

      Zhenjun Mao Haorui Gu Haiyan Che Xufeng Lin . Exploration on Experiment Teaching of UHPLC-IC Based on Valve Switching Method. University Chemistry, 2024, 39(4): 81-86. doi: 10.3866/PKU.DXHX202311013

    16. [16]

      Congying Wen Zhengkun Du Yukun Lu Zongting Wang Hua He Limin Yang Jingbin Zeng . Teaching Reform and Practice of Modern Analytical Technology under the Integration of Science, Industry, and Education. University Chemistry, 2024, 39(8): 104-111. doi: 10.3866/PKU.DXHX202312089

    17. [17]

      Qi Wang Yicong Gao Feng Lu Quli Fan . Preparation and Performance Characterization of the Second Near-Infrared Phototheranostic Probe: A New Design and Teaching Practice of Polymer Chemistry Comprehensive Experiment. University Chemistry, 2024, 39(11): 342-349. doi: 10.12461/PKU.DXHX202404141

    18. [18]

      Siyu Zhang Kunhong Gu Bing'an Lu Junwei Han Jiang Zhou . Hydrometallurgical Processes on Recycling of Spent Lithium-lon Battery Cathode: Advances and Applications in Sustainable Technologies. Acta Physico-Chimica Sinica, 2024, 40(10): 2309028-. doi: 10.3866/PKU.WHXB202309028

    19. [19]

      Donghui PANYuping XUXinyu WANGLizhen WANGJunjie YANDongjian SHIMin YANGMingqing CHEN . Preparation and in vivo tracing of 68Ga-labeled PM2.5 mimetic particles for positron emission tomography imaging. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 669-676. doi: 10.11862/CJIC.20230468

    20. [20]

      Zhangshu Wang Xin Zhang Jixin Han Xuebing Fang Xiufeng Zhao Zeyu Gu Jinjun Deng . Exploration and Design of Experimental Teaching on Ultrasonic-Enhanced Synergistic Treatment of Ternary Composite Flooding Produced Water. University Chemistry, 2024, 39(5): 116-124. doi: 10.3866/PKU.DXHX202310056

Metrics
  • PDF Downloads(1914)
  • Abstract views(1833)
  • HTML views(122)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return