Citation: LI Jian-Chang, WU Jun-Zhi, ZHOU Cheng, NG Xing. Latest Studies on Metal-Molecule-Metal Junctions[J]. Acta Physico-Chimica Sinica, ;2013, 29(06): 1123-1144. doi: 10.3866/PKU.WHXB201304014
-
As promising building blocks for molecular electronics, organic molecules have attracted intense research interest. Metal-molecule-metal junctions are often used as testbeds for studying organic molecules’ charge transport properties. In this article, fabrication methods, nanoscalability and addressability of these junctions are reviewed. Fabrication approaches are classified into soft contact, scanning probe microscopy, against-nanowire, crossed-wire, shadow angle evaporation and nanopore junctions. The effects of preparation method on the junction charge transport properties are systematically discussed. In general, the scanning tunneling microscopy technique is suitable for fast screening of molecular conductance, but cannot address junction that limits their in-situ temperature-dependent characterizations. The nanopore junction guarantees od control over the device size and the intrinsic contact stability, however, the nature of the electrode-molecule interface is not well understood. Shadow angle evaporation and soft contact techniques can effectively reduce the possibility of device short circuiting; however, the electrode dimensions limit potential applications. The against-nanowire method provides an easy way to fabricate addressable junctions, and if combined with the crossed-wire procedure may have potential for fabrication and three-dimensional integration of molecular junctions.
-
-
[1]
(1) Thompson, S. E.; Parthasarathy, S. Mater. Today 2006, 9, 20.
-
[2]
(2) Boussaad, S.; Tao, N. J. Appl. Phys. Lett. 2002, 80, 2398. doi: 10.1063/1.1465128
-
[3]
(3) Slowinski, K.; Majda, M. J. Electroanal. Chem. 2000, 491,139. doi: 10.1016/S0022-0728(00)00305-3
-
[4]
(4) Li, J. C.; Blackstock, S. C.; Szulczewski, G. J. J. Phys. Chem. B 2006, 10, 17493.
-
[5]
(5) Vilan, A.; Cahen, D. Adv. Funct. Mater. 2002, 11-12, 795.
-
[6]
(6) Liu, Y. H.; Fan, X. L.; Yang, D. L.;Wang, C.;Wan, L. J.; Bai,C. L. Chem. Phys. Lett. 2003, 380, 767. doi: 10.1016/j.cplett.2003.09.080
-
[7]
(7) Ruppel, L.; Birkner, A.;Witte, G.; Busse, C.; Lindner, T.;Paasch, G.;Wöll, C. J. Appl. Phys. 2007, 102, 033708. doi: 10.1063/1.2764027
-
[8]
(8) Jung, T. A.; Gimzewski, S. J. K.; Tang, H.; Joachim, C.Science 1996, 271, 181. doi: 10.1126/science.271.5246.181
-
[9]
(9) Choi, S. H.; Kim, B. S.; Frisbie, C. D. Science 2008, 320,1482. doi: 10.1126/science.1156538
-
[10]
(10) Cui, X. D.; Primak, A.; Zarate, X.; Tomfohr, J.; Sankey, O. F.;Moore, A. L.; Moore, T. A.; Gust, D.; Nagahara, L. A.;Lindsay, S. M. J. Phys. Chem. B 2002, 106, 8609.
-
[11]
(11) Zhou, J. F.; Chen, F.; Xu, B. Q. J. Am. Chem. Soc. 2009, 131,10439. doi: 10.1021/ja900989a
-
[12]
(12) Park, H.; Lim, A. K. L.; Alivisatos, A. P.; Park, J.; McEuen, P.L. Appl. Phys. Lett. 1999, 75, 301. doi: 10.1063/1.124354
-
[13]
(13) Lortscher, E.;Weber, H. B.; Riel, H. Phys. Rev. Lett. 2007, 98,176807. doi: 10.1103/PhysRevLett.98.176807
-
[14]
(14) Li, C. Z.; He, H. X.; Tao, N. J. Appl. Phys. Lett. 2000, 77,3995. doi: 10.1063/1.1332406
-
[15]
(15) Mbindyo, J. K. N.; Mallouk, T. E.; Mattzela, J. B.;Kratochvilova, I.; Razavi, B.; Jackson, T. N.; Mayer, T. S.J. Am. Chem. Soc. 2002, 124, 4020. doi: 10.1021/ja016696t
-
[16]
(16) Qin, L.; Park, S.; Huang, L.; Mirkin, C. A. Science 2005, 309,113. doi: 10.1126/science.1112666
-
[17]
(17) Amlani, I.; Rawlett, A. M.; Nagahara, L. A.; Tsui, R. K. J. Vac. Sci. Technol. B 2002, 20, 2802. doi: 10.1116/1.1523025
-
[18]
(18) Blum, A. S.; Kushmerick, J. G.; Pollack, S. K.; Yang, J. C.;Moore, M.; Naciri, J.; Shashidhar, R.; Ratna, B. R. J. Phys. Chem. B 2004, 108, 18124. doi: 10.1021/jp0480854
-
[19]
(19) Katsia, E.; Tallarida, G.; Kutrzeba-Kotowska, B.; Ferrari, S.;Bundgaard, E.; Søndergaard, R.; Krebs, F. C. Org. Electron.2008, 9, 1044. doi: 10.1016/j.orgel.2008.08.010
-
[20]
(20) Li, J. C. Chem. Phys. Lett. 2009, 473, 189. doi: 10.1016/j.cplett.2009.03.044
-
[21]
(21) Austin, M. D.; Chou, S. Y. Nano Lett. 2003, 3, 1687. doi: 10.1021/nl034831p
-
[22]
(22) Nijhuis, C. A.; Reus,W. F.; Barber, J. R.; Dickey, M. D.;Whitesides, G. M. Nano Lett. 2010, 10, 3611. doi: 10.1021/nl101918m
-
[23]
(23) Bonifas, A. P.; McCreery, R. L. Nat. Nanotechnol. 2010, 115,612.
-
[24]
(24) Shamai, T.; Ophir, A.; Selzer, Y. Appl. Phys. Lett. 2007, 91,102108. doi: 10.1063/1.2780057
-
[25]
(25) Zhitenev, N. B.; Meng, H.; Bao, Z. Phys. Rev. Lett. 2002, 88,226801. doi: 10.1103/PhysRevLett.88.226801
-
[26]
(26) Zhou, C.; Deshpande, M. R.; Reed, M. A.; Jones, L.; Tour, J.M. Appl. Phys. Lett. 1997, 71, 611. doi: 10.1063/1.120195
-
[27]
(27) Martin, Z. L.; Majumdar, N.; Cabral, M. J.; Gergel-Hackettn,N.; Camacho-Alanis, F.; Swami, N.; Bean, J. C.; Lloyd, R. H.;Yao, Y.; Tour, J. M.; Long, D.; Shashidhar, R. IEEE Trans. Nanotechnol. 2009, 8, 574. doi: 10.1109/TNANO.2009.2021161
-
[28]
(28) Kim, T.W.;Wang, G.; Lee, H.; Lee, T. Nanotechnology 2007,18, 315204. doi: 10.1088/0957-4484/18/31/315204
-
[29]
(29) He, J. L.; Chen, B.; Flatt, A. K.; Stephenson, J. J.; Doyle, C.D.; Tour, J. S. Nat. Mater. 2006, 5, 61.
-
[30]
(30) Martin, C. A.; Ding, D. P.; van der Zant, H. S. J.; vanRuitenbeek, J. M. New J. Phys. 2008, 10, 065008. doi: 10.1088/1367-2630/10/6/065008
-
[31]
(31) Kervennic, Y. V.; Vanmaekelbergh, D.; Kouwenhoven, L. P.;van der Zant, H. S. J. Appl. Phys. Lett. 2003, 83, 3782. doi: 10.1063/1.1623317
-
[32]
(32) Yoon, H. P.; Maitani, M. M.; Cabarcos, O. M.; Cai, L.; Mayer,T. S.; Allara, D. L. Nano Lett. 2010, 10, 2897. doi: 10.1021/nl100982q
-
[33]
(33) Majumdar, N.; Gergel, N.; Routenberg, D.; Bean, J. C.;Harriott, L. R.; Li, B.; Pu, L.; Yao, Y.; Tour, J. M. J. Vac. Sci. Technol. B 2005, 23, 1417. doi: 10.1116/1.1935528
-
[34]
(34) Slowinki, K.; Fong, H. K. Y.; Majda, M. J. Am. Chem. Soc.1999, 121, 7257. doi: 10.1021/ja991613i
-
[35]
(35) Selzer, Y.; Salomon, A.; Cahen, D. J. Am. Chem. Soc. 2002,124, 2886. doi: 10.1021/ja0177511
-
[36]
(36) Selzer, Y.; Cahen, D. Adv. Mater. 2001, 13, 508.
-
[37]
(37) Itoh, E.; Iwamoto, M. J. Appl. Phys. 1999, 85, 7239. doi: 10.1063/1.370538
-
[38]
(38) Selzer, Y.; Salomon, A.; Cahen, D. J. Phys. Chem. B 2002,106, 10432. doi: 10.1021/jp026324m
-
[39]
(39) Galperin, M.; Nitzan, A.; Sek, S.; Majda, M. J. Electroanal. Chem. 2003, 550-551, 337.
-
[40]
(40) Race, H. H.; Reynolds, S. I. J. Am. Chem. Soc. 1939, 61, 1425.doi: 10.1021/ja01875a030
-
[41]
(41) vonWrochem, F.; Gao, D. Q.; Scholz, F.; Nothofer, H. G.;Nelles, G.;Wessels, J. M. Nat. Nanotechnol. 2010, 119, 618.
-
[42]
(42) Tran, E.; Duati, M.; Ferri, V.; Müllen, K.; Zharnikov, M.;Whitesides, G. M.; Rampi, M. A. Adv. Mater. 2006, 18, 1323.
-
[43]
(43) Tran, E.; Cohen, A. E.; Murray, R.W.; Rampi, M. A.;Whitesides, G. M. J. Am. Chem. Soc. 2009, 131, 2141. doi: 10.1021/ja804075y
-
[44]
(44) Haag, R.; Rampi, M. A.; Holmlin, R. E.; George, M.W. J. Am. Chem. Soc. 1999, 121, 7895. doi: 10.1021/ja990230h
-
[45]
(45) Vilan, A.; Ghabboun, J.; Cahen, D. J. Phys. Chem. B 2003,107, 6360.
-
[46]
(46) Moons, E.; Bruening, M.; Shanzer, A.; Beier, J.; Cahen, D.Synth. Met. 1996, 76, 245. doi: 10.1016/0379-6779(95)03463-T
-
[47]
(47) Wu, D. G.; Ghabboun, J.; Martin, J. M. L.; Cahen, D. J. Phys. Chem. B 2001, 105, 12011. doi: 10.1021/jp012708l
-
[48]
(48) Shimizu, K. T.; Fabbri, J. D.; Jelincic, J. J.; Melosh, N. A. Adv. Mater. 2006, 18, 1499.
-
[49]
(49) Mohamed Ikram, I.; Rabinal, M. K.; Kalasad, M. N.;Mulimani, B. G. Langmuir 2009, 25, 3305. doi: 10.1021/la8035488
-
[50]
(50) Fan, X. L.;Wang, C.; Yang, D. L .;Wan, L. J.; Bai, C. L.Chem. Phys. Lett. 2002, 361, 465. doi: 10.1016/S0009-2614(02)00983-1
-
[51]
(51) Liu, Y. H.; Fan, X. L.; Yang, D. L.;Wang, C.;Wan, L. J.; Bai,C. L. Langmuir 2004, 20, 855. doi: 10.1021/la0353529
-
[52]
(52) Dhirani, A.; Lin, P. H.; Guyot-Sionnest, P.; Zehner, R.W.; Sita,L. R. J. Chem. Phys. 1997, 106, 5249. doi: 10.1063/1.473523
-
[53]
(53) Kelley, T.W.; Granstrom, E. L.; Frisbie, C. D. Adv. Mater.1999, 11, 261.
-
[54]
(54) Jackel, F.;Watson, M. D.; Mullen, K.; Rabe, J. P. Phys. Rev. Lett. 2002, 92, 188303.
-
[55]
(55) Wold, D. J.; Frisbie, D. F. J. Am. Chem. Soc. 2001, 123, 5549.doi: 10.1021/ja0101532
-
[56]
(56) Reuter, M. G.; Sukharev, M.; Seideman, T. Phys. Rev. Lett.2008, 101, 208303. doi: 10.1103/PhysRevLett.101.208303
-
[57]
(57) He, H. X.; Li, C. Z.; Tao, N. J. Appl. Phys. Lett. 2001, 78, 811.doi: 10.1063/1.1335551
-
[58]
(58) Mativetsky, J. M.; Pace, G.; Elbing, M., Rampi, M. A.; Mayor,M.; Samor, P. J. Am. Chem. Soc. 2008, 130, 9192. doi: 10.1021/ja8018093
-
[59]
(59) Kamenetska, M.; Koentopp, M.; Whalley, A. C.; Park, Y. S.;Steigerwald, M. L.; Nuckolls, C.; Hybertsen, M. S.;Venkataraman, L. Phys. Rev. Lett. 2009, 102, 126803. doi: 10.1103/PhysRevLett.102.126803
-
[60]
(60) Xia, J. L.; Diez-Perez, I.; Tao, N. J. Nano Lett. 2008, 8, 1960.doi: 10.1021/nl080857a
-
[61]
(61) Weibel, N.; B?aszczyk, A.; von Hänisch, C.; Mayor, M.;Pobelov, I.;Wandlowski, T.; Chen, F.; Tao, N. J. Eur. J. Org. Chem. 2008, 136.
-
[62]
(62) Hihath, J.; Chen, F.; Zhang, P.; Tao, N. J. J. Phys. Condes. Matter. 2007, 202, 215202.
-
[63]
(63) Li, X. L.; Hihath, J.; Chen, F.; Masuda, T.; Zang, L.; Tao, N. J.J. Am. Chem. Soc. 2007, 129, 11535. doi: 10.1021/ja072990v
-
[64]
(64) Fatemi, V.; Kamenetska, M.; Neaton, J. B.; Venkataraman, L.Nano Lett. 2011, 11, 1988. doi: 10.1021/nl200324e
-
[65]
(65) Zhou, J. F.; Chen, G. J.; Xu, B. Q. J. Phys. Chem. C 2010, 114,8587. doi: 10.1021/jp101257y
-
[66]
(66) Dulic, D.; van der Molen, S. J.; Kudernac, T.; Jonkman, H. T.;de Jong, J. J. D.; Bowden, T. N.; van Esch, J.; Feringa, B. L.;vanWees, B. J. Phys. Rev. Lett. 2003, 91, 207402. doi: 10.1103/PhysRevLett.91.207402
-
[67]
(67) Marquardt, C.W.; Grunder, S.; B?aszczyk, A.; Dehm, S.;Hennrich, F.; Lohneysen, H. v.; Mayor, M.; Krupke, R. Nat. Nanotechnol. 2010, 230, 1.
-
[68]
(68) Hu,W. P.; Jiang, J.; Nakashima, H.; Luo, Y.; Kashimura, Y.;Chen, K. Q.; Shuai, Z.; Furukawa, K.; Lu,W.; Liu, Y. Q.; Zhu,D. B.; Torimitsu, T. Phys. Rev. Lett. 2006, 96, 027801. doi: 10.1103/PhysRevLett.96.027801
-
[69]
(69) Moreland, J.; Ekin, J.W. J. Appl. Phys. 1998, 58, 3888.
-
[70]
(70) Muller, C. J.; Vleeming, B.; Reed, M. A.; Lambaz, J. J. S.;Haraz, R.; Jones, L.; Tour, J. M. Nanotechnology 1996, 7, 409.doi: 10.1088/0957-4484/7/4/019
-
[71]
(71) Reed, M. A.; Zhou, C.; Muller, C. J.; Burgin, T. P.; Tour, J. M.Science 1997, 278, 252. doi: 10.1126/science.278.5336.252
-
[72]
(72) Smit, R. H. M.; Noat, Y.; Untiedt, C.; Lang, N. D.; vanHemert, M. C.; van Ruitenbeek, J. M. Nature 2002, 419, 906.doi: 10.1038/nature01103
-
[73]
(73) van Ruitenbeek, J. M.; Alvarez, A.; Pineyro, I.; Grahmann, C.;Joyez, P.; Devoret, M. H.; Esteve, D.; Urbina, C. Rev. Sci. Instrum. 1995, 67, 108.
-
[74]
(74) Wu, S. M.; nzalez, M. T.; Huber, R.; Grunder, S.; Mayor,M.; Shonenberger, C.; Calame, M. Nat. Nanotechnol. 2008,237, 569.
-
[75]
(75) Kiguchi, M.; Murakoshi, K. Thin Solid Films 2009, 518, 466.doi: 10.1016/j.tsf.2009.07.024
-
[76]
(76) Kiguchi, M.; Tal, O.;Wohlthat, S.; Pauly, F.; Krieger, M.;Djukic, D.; Cuevas, J. C.; van Ruitenbeek, J. M. Phys. Rev. Lett. 2008, 101, 046801. doi: 10.1103/PhysRevLett.101.046801
-
[77]
(77) Dolan, G. J. Appl. Phys. Lett. 1977, 31, 337. doi: 10.1063/1.89690
-
[78]
(78) Durkan, C.;Welland, M. E. Ultramicroscopy 2008, 82, 125.
-
[79]
(79) Hadeed, F. O.; Durkan, C. Appl. Phys. Lett. 2007, 91, 123120.doi: 10.1063/1.2785982
-
[80]
(80) Demarchi, D.; Civera, P.; Piccinini, G.; Cocuzza, M.; Perrone,D. Electrochim. Acta 2009, 54, 6003. doi: 10.1016/j.electacta.2009.02.070
-
[81]
(81) Asghar,W.; Ramachandran, P. P.; Adewumi, A.; Noor, M. R.;Iqba, S. M. J. Manuf. Sci. Eng.-Trans. ASME 2010, 132,030911. doi: 10.1115/1.4001664
-
[82]
(82) Khondaker, S. I.; Yao, Z.; Cheng, L.; Henderson, J. C.; Yao, Y.X.; Tour, J. M. Appl. Phys. Lett. 2004, 85, 645. doi: 10.1063/1.1773915
-
[83]
(83) Trouwborst, M. L.; van Der Molen, S. J.; vanWees, B. J. J. Appl. Phys. 2006, 99, 114316. doi: 10.1063/1.2203410
-
[84]
(84) Heersche, H. B.; de Groot, Z.; Folk, J. A.; Kouwenhoven, L.P.; van Der Zant, H. S. J.; Houck, A. A.; Labaziewicz, J.;Chuang, I. L. Phys. Rev. Lett. 2006, 96, 017205. doi: 10.1103/PhysRevLett.96.017205
-
[85]
(85) Taychatanapat, T.; Bolotin, T. K. I.; Kuemmeth, F.; Ralph, D.C. Nano Lett. 2007, 7, 652. doi: 10.1021/nl062631i
-
[86]
(86) Sutanto, J.; Smith, R. L.; Collins, S. D. J. Micromech. Microeng. 2010, 20, 045016. doi: 10.1088/0960-1317/20/4/045016
-
[87]
(87) Cai, L. T.; Skulason, H.; Kushmerick, J. G.; Pollack, S. K.;Naciri, J.; Shashidhar, R.; Allara, D. L.; Mallouk, T. E.; Mayer,T. S. J. Phys. Chem. B 2004, 108, 2827. doi: 10.1021/jp0361273
-
[88]
(88) Li, C. Z.; Bo zi, A.; Huang,W.; Tao, N. J. Nanotechnology1999, 10, 221. doi: 10.1088/0957-4484/10/2/320
-
[89]
(89) Zhou,W. J.;Wei, Z. X.; Yao, J. L.; Gu, R. A. Chem. J. Chin. Univ. 2009, 30, 178. [邹文君, 魏志祥, 姚建林, 顾仁敖. 高等学校化学学报, 2009, 30, 178.]
-
[90]
(90) Morpur , A. F.; Marcus, C. M.; Robinson, D. B. Appl. Phys. Lett. 1999, 74, 2084. doi: 10.1063/1.123765
-
[91]
(91) Kashimura, Y.; Nakashima, H.; Furukawa, K.; Torimitsu, K.Thin Solid Films 2003, 438-439, 317.
-
[92]
(92) Kim, B.; Ahn, S. J.; Park, J. G.; Lee, S. H.; Park, Y.W.;Campbell, E. E. B. Thin Solid Films 2006, 499, 196. doi: 10.1016/j.tsf.2005.06.072
-
[93]
(93) Kim, B.; Ahn, S. J.; Park, J. G.; Lee, S. H.; Park, Y.W. Appl. Phys. Lett. 2004, 85, 4756. doi: 10.1063/1.1821657
-
[94]
(94) He, H. X.; Zhu, J. S.; Tao, N. J.; Nagahara, L. A.; Amlani, I.;Tsui, R. J. Am. Chem. Soc. 2001, 123, 7730. doi: 10.1021/ja016264i
-
[95]
(95) Qu, D. Y.; Uosaki, K. J. Phys. Chem. B 2006, 110, 17570. doi: 10.1021/jp0632135
-
[96]
(96) Garno, J. C.; Zangmeister, C. D.; Batteas, J. D. Langmuir2007, 23, 7874. doi: 10.1021/la070015b
-
[97]
(97) Bechelany, M.; Brodard, P.; Elias, J.; Brioude, A.; Michler, J.;Philippe, L. Langmuir 2010, 26, 14364. doi: 10.1021/la1016356
-
[98]
(98) Zangmeister, C. D.; van Zee, R. D. Langmuir 2003, 19, 8065.doi: 10.1021/la026801s
-
[99]
(99) Zhu, P. X.; Masuda, Y.; Koumoto, K. J. Mater. Chem. 2004,14, 976. doi: 10.1039/b311061c
-
[100]
(100) Garno, J. C.; Yang, Y. Y.; Amro, N. A.; Cruchon-Dupeyrat, S.;Chen, S.W.; Liu, G. Y. Nano Lett. 2003, 3, 389. doi: 10.1021/nl025934v
-
[101]
(101) Martin, B. R.; Dermody, D. J.; Reiss, B. D.; Fang, M. M.;Lyon, L. A.; Natan, M. J.; Mallouk, T. E. Adv. Mater. 1999, 11,1021.
-
[102]
(102) Smith, P. A.; Nordquist, C. D.; Jackson, T. N.; Mayer, T. S.;Martin, B. R.; Mbindyo, J.; Mallouk, T. E. Appl. Phys. Lett.2000, 77, 1399. doi: 10.1063/1.1290272
-
[103]
(103) Menon, V. P.; Martin, C. R. Anal. Chem. 1995, 67, 1920. doi: 10.1021/ac00109a003
-
[104]
(104) Cai, L. T.; Cabassi, M. A.; Yoon, H.; Cabarcos, O. M.;McGuiness, C. L.; Flatt, A. K.; Allara, D. L.; Tour, J. M.;Mayer, T. S. Nano Lett. 2005, 5, 2365. doi: 10.1021/nl051219k
-
[105]
(105) Salem, A. K.; Chen, M.; Hayden, J.; Leong, K.W.; Searson, P.C. Nano Lett. 2004, 4, 1163. doi: 10.1021/nl049462r
-
[106]
(106) Chen, X. D.; Yeganeh, S.; Qin, L. D.; Li, S. Z.; Xue, C.;Braunschweig, A. B.; Schatz, G. C.; Ratner, M. A.; Mirkin, C.A. Nano Lett. 2009, 9, 3974. doi: 10.1021/nl9018726
-
[107]
(107) Osberg, K. D.; Schmucker, A. L.; Senesi, A. J.; Mirkin, C. A.Nano Lett. 2011, 11, 820. doi: 10.1021/nl1041534
-
[108]
(108) Lee, B. Y.; Heo, K.; Schmucker, A. L.; Jin, H. J.; Lim, J. K.;Kim, T.; Lee, H.; Jeon, K. S.; Suh, Y. D.; Mirkin, C. A.; Hong,S. Nano Lett. 2012, 12, 1879. doi: 10.1021/nl204259t
-
[109]
(109) Chen, X. D.; Jeon, Y. M.; Jang, J.W.; Qin, L. D.; Huo, F.W.;Wei,W.; Mirkin, C. A. J. Am. Chem. Soc. 2008, 130, 8166.doi: 10.1021/ja800338w
-
[110]
(110) Klein, D. L.; McEuen, P. L.; Katari, J. E. B.; Roth, R.;Alivisatos, A. P. Appl. Phys. Lett. 1996, 68 , 2574.
-
[111]
(111) Amlani, I.; Rawlett, A. M.; Nagahara, L. A.; Tsui, R. K. Appl. Phys. Lett. 2002, 80, 2761. doi: 10.1063/1.1469655
-
[112]
(112) Choi, J.; Zhao, Y. H.; Zhang, D. Y.; Chien, S.; Lo, Y. H. Nano Lett. 2003, 3, 995. doi: 10.1021/nl034106e
-
[113]
(113) Long, D. P.; Patterson, C. H.; Moore, M. H.; Seferos, D. S.;Bazan, G. C.; Kushmerick, J. G. Appl. Phys. Lett. 2005, 86,153105. doi: 10.1063/1.1899772
-
[114]
(114) Dadosh, T.; rdin, Y.; Krahne, R.; Khivrich, I.; Mahalu, D.;Frydman, V.; Sperling, J.; Yacoby, A.; Bar-Joseph, I. Nature2005, 436, 677. doi: 10.1038/nature03898
-
[115]
(115) Kushmerick, J. G.; Holt, D. B.; Pollack, S. K.; Ratner, M. A.;Yang, J. C.; Schull, T. L.; Naciri, J.; Moore, M. H.; Shashidhar,R. J. Am. Chem. Soc. 2002, 124, 10654. doi: 10.1021/ja027090n
-
[116]
(116) Kushmerick, J. G.; Naciri, J.; Yang, J. C.; Shashidhar, R. Nano Lett. 2003, 3, 897. doi: 10.1021/nl034201n
-
[117]
(117) Francis, T. L.; Mermer, O.; Veeraraghavan, G.;Wohlgenannt,M. New J. Phys. 2004, 6, 185. doi: 10.1088/1367-2630/6/1/185
-
[118]
(118) De Valladares, L. L. S.; Felix, L. L.; Dominguez, A. B.;Mitrelias, T.; Sfigakis, F.; Khondaker, S. I.; Wbarnes, C. H.;Majima, Y. Nanotechnology 2010, 21, 445304. doi: 10.1088/0957-4484/21/44/445304
-
[119]
(119) Li, C.; Zhang, D. H.; Liu, X. L.; Han, S.; Tang, T.; Zhou, C.W.; Fan,W.; Koehne, J.; Han, J.; Meyyappan, M.; Rawlett, A.M.; Price, D.W.; Tour, J. M. Appl. Phys. Lett. 2003, 82, 645.doi: 10.1063/1.1541943
-
[120]
(120) Chen, Y.; Ohlberg, D. A. A.; Li, X. M.; Stewart, D. R.;Williams, R. S.; Jeppesen, J. O.; Nielsen, K. A.; Stoddart, J. F.;Deirdre, L. O.; Anderson, E. Appl. Phys. Lett. 2003, 82, 1610.doi: 10.1063/1.1559439
-
[121]
(121) Chen, Y.; Jung, G. Y.; Ohlberg, D. A. A.; Li, X. M.; Stewart, D.R.; Jeppesen, J. O.; Nielsen, K. A.; Stoddart, J. F.;Williams, R.S. Nanotechnology 2003, 14, 462. doi: 10.1088/0957-4484/14/4/311
-
[122]
(122) Jung, G. Y.; Ganapathiappan, S.; Ohlberg, D. A. A.; Olynick,D. L.; Chen, Y.; Tong,W. M.;Williams, R. S. Nano Lett. 2004,4, 1225. doi: 10.1021/nl049487q
-
[123]
(123) Xia, Q. F.; Yang, J. J.;Wu,W.; Li, X. M.;Williams, R. S. Nano Lett. 2010, 10, 2909. doi: 10.1021/nl1017157
-
[124]
(124) Li, J. C.;Wang, D.; Ba, D. C. J. Phys. Chem. C 2012, 116,10986. doi: 10.1021/jp300467c
-
[125]
(125) Shen, Q.; Cao, Y.; Liu, S.; Steigerwald, M. L.; Guo, X. F. J. Phys. Chem. C 2009, 113, 10807.
-
[126]
(126) Ioffe, Z.; Shama, T.; Ophir, A.; Noy, G.; Yutsis, I.; Kfir, K.;Cheshnovsky, O.; Selzer, Y. Nat. Nanotechnol. 2008, 304, 727.
-
[127]
(127) Zhitenev, N. B.; Erbe, A.; Bao, Z. Phys. Rev. Lett. 2004, 92,186805. doi: 10.1103/PhysRevLett.92.186805
-
[128]
(128) Wang,W. Y.; Lee, T.; Reed, M. A. Phys. Rev. B 2003, 68,035416. doi: 10.1103/PhysRevB.68.035416
-
[129]
(129) Reed, M. A.; Chen, J.; Rawlett, A. M.; Price, D.W.; Tour, J. M.Appl. Phys. Lett. 2001, 78, 3735. doi: 10.1063/1.1377042
-
[130]
(130) Chen, J.; Reed, M. A.; Rawlett, A. M.; Tour, J. M. Science1999, 286, 1550. doi: 10.1126/science.286.5444.1550
-
[131]
(131) Majumdar, N.; Gergel-Hackettn, N.; Bean, J. C.; Harriott, L.R.; Pattanaik, G.; Zangrai, G.; Yao, Y.; Tour, J. M. Journal of Electronic Materials 2006, 35, 140. doi: 10.1007/s11664-006-0196-8
-
[132]
(132) Gergel, N.; Majumdar, N.; Keyvanfar, K.; Swami, N.; Harriott,L. R.; Bean, J. C.; Gyana, P.; Giovanni, Z.; Yao, Y.; Tour, J. M.J. Vac. Sci. Technol. A 2005, 23, 880. doi: 10.1116/1.1931687
-
[133]
(133) Kalinowski, J. J. Phys. D-Appl. Phys. 1999, 32, 179.
-
[134]
(134) Hutchison, G. R.; Ratner, M. A.; Marks, T. J. J. Am. Chem. Soc. 2005, 127, 16866. doi: 10.1021/ja0533996
-
[135]
(135) Chen, J.; Calvet, L. C.; Reed, M. A.; Carr, D.W.; Grubisha, D.S.; Bennett, D.W. Chem. Phys. Lett. 1999, 313, 741. doi: 10.1016/S0009-2614(99)01060-X
-
[136]
(136) DiBenedetto, S. A.; Facchetti, A.; Ratner, M. A.; Marks, T. J.J. Am. Chem. Soc. 2009, 131, 7158. doi: 10.1021/ja9013166
-
[137]
(137) Nijhuis, C. A.; Reus,W. F.; Barber, J. R.; Whitesides, G. M.J. Phys. Chem. C 2012, 116, 14139. doi: 10.1021/jp303072a
-
[138]
(138) Pakoulev, A. V.; Burtman, V. J. Phys. Chem. C 2009, 113,21413.
-
[139]
(139) Conklin, D.; Nanayakkara, S.; Park, T. H.; Lagadec, M. F.;Stecher, J. T.; Therien, M. J.; Bonnell, D. A. Nano Lett. 2012,12, 2414. doi: 10.1021/nl300400a
-
[140]
(140) Lu, Q.; Yao, C.;Wang, X. H.;Wang. F. S. J. Phys. Chem. C2012, 116, 17853. doi: 10.1021/jp2119923
-
[141]
(141) Fadjie-Djomkam, A. B.; Ababou-Girard, S.; Hiremath, R.;Herrier, C.; Fabre, B.; Solal, F.; det, C. J. Appl. Phys. 2011,110, 083708. doi: 10.1063/1.3651401
-
[142]
(142) Salomon, A.; Shpaisman, H.; Seitz, O.; Boecking, T.; Cahen,D. J. Phys. Chem. C 2008, 112, 3969. doi: 10.1021/jp710985b
-
[143]
(143) Chu, C.W.; Na, J. S.; Parsons, G. N. J. Am. Chem. Soc. 2007,129, 2287. doi: 10.1021/ja064968s
-
[144]
(144) Wold, D. J.; Haag, R.; Rampi, M. A.; Frisbie, C. D. J. Phys. Chem. B 2002, 106, 2813. doi: 10.1021/jp013476t
-
[145]
(145) Holmlin, R. E.; Haag, R.; Chabinyc, M. L.; Ismagilov, R. F.;Cohen, A. E.; Terfort, A.; Rampi, M. A.; Whitesides, G. M.J. Am. Chem. Soc. 2001, 123, 5075. doi: 10.1021/ja004055c
-
[146]
(146) York, R. L.; Nguyen, P. T.; Slowinski, K. J. Am. Chem. Soc.2003, 125, 5948. doi: 10.1021/ja0211353
-
[147]
(147) Slowinski, K.; Chamberlain, R. V.; Miller, C. J.; Majda, M.J. Am. Chem. Soc. 1997, 119, 11910. doi: 10.1021/ja971921l
-
[148]
(148) Thuo, M. M.; Reus,W. F.; Nijhuis, C. A.; Barber, J. R.; Kim,C.; Schulz, M. D.; Whitesides, G. M. J. Am. Chem. Soc. 2011,133, 2962. doi: 10.1021/ja1090436
-
[149]
(149) Chiechi, R. C.;Weiss, E. A.; Dickey, M. D.; Whitesides, G. M.Angew. Chem. Int. Edit. 2008, 47, 142.
-
[150]
(150) Chen, F.; Li, X. L.; Hihath, J.; Huang, Z. F.; Tao, N. J. J. Am. Chem. Soc. 2006, 128, 15874. doi: 10.1021/ja065864k
-
[151]
(151) Li, X. L.; He, J.; Hihath, J.; Xu, B. Q.; Lindsay, S. M.; Tao, N.J. J. Am. Chem. Soc. 2006, 128, 2135. doi: 10.1021/ja057316x
-
[152]
(152) Cui, X. D.; Zarate, X.; Tomfohr, J.; Sankey1, O. F.; Primak, A.;Moore, A. L.; Moore, T. A.; Gust, D.; Harris, G.; Lindsay, S.M. Nanotechnology 2002, 13, 5. doi: 10.1088/0957-4484/13/1/302
-
[153]
(153) Engelkes, V. B.; Beebe, J. M.; Frisbie, C. D. J. Am. Chem. Soc.2004, 126, 14287. doi: 10.1021/ja046274u
-
[154]
(154) Smaali, K.; Cle'ment, N.; Patriarche, G.; Vuillaume, D. ACS Nano 2012, 6, 4639. doi: 10.1021/nn301850g
-
[155]
(155) Song, H.; Kim, Y.; Jeong, H.; Reed, M. A.; Lee, T. J. Phys. Chem. C 2010, 114, 20431. doi: 10.1021/jp104760b
-
[156]
(156) Creager, S.; Yu, C. J.; Bamdad, C.; Connor, S. O.; MacLean,T.; Lam, E.; Chong, Y.; Olsen, G. T.; Luo, J. Y.; zin, M.;Kayyem, J. F. J. Am. Chem. Soc. 1999, 121, 1059. doi: 10.1021/ja983204c
-
[157]
(157) Wang,W. Y.; Lee, T.; Reed, M. A. J. Phys. Chem. B 2004, 108,18398. doi: 10.1021/jp048904k
-
[158]
(158) Lee, T.;Wang,W. Y.; Zhang, J. J.; Su, J.; Klemic, J. F.; Reed,M. A. Curr. Appl. Phys. 2005, 5, 213. doi: 10.1016/j.cap.2003.11.088
-
[159]
(159) Bonifas, A. P.; McCreery, R. L. Nano Lett. 2011, 11, 4725. doi: 10.1021/nl202495k
-
[160]
(160) Kim, B. S.; Choi, S. H.; Zhu, X. Y.; Frisbie, C. D. J. Am. Chem. Soc. 2011, 133, 19864. doi: 10.1021/ja207751w
-
[161]
(161) Liu, K.; Li, G. R.;Wang, X. H.;Wang, F. S. J. Phys. Chem. C2008, 112, 4342.
-
[162]
(162) He, J.; Chen, F.; Li, J.; Sankey, O. F.; Terazono, Y.; Herrero,C.; Gust, D.; Moore, T. A.; Moore, A. L.; Lindsay, S. M. J. Am. Chem. Soc. 2005, 127, 1384. doi: 10.1021/ja043279i
-
[163]
(163) Sakaguchi, H.; Hirai, A.; Iwata, F.; Sasaki, A.; Nagamura, T.Appl. Phys. Lett. 2001, 79, 3708. doi: 10.1063/1.1421233
-
[164]
(164) Kaliginedi, V.; Moreno-García, P.; Valkenier, H.; Hong,W. J.;García-Suarez, V. M.; Otten, J. L. H.; Buiter, P.; Hummelen, J.C.; Lambert, C. J.;Wandlowski, T. J. Am. Chem. Soc. 2012,134, 5262. doi: 10.1021/ja211555x
-
[165]
(165) Liu, K.;Wang, X. H.;Wang, F. S. ACS Nano 2008, 2, 2315.doi: 10.1021/nn800475a
-
[166]
(166) Akkerman, H. B.; de Boer, B. J. Condens. Matter Phys. 2008,20, 013001. doi: 10.1088/0953-8984/20/01/013001
-
[167]
(167) Moth-Poulsen, K.; Patrone, L.; Stuhr-Hansen, N.; Christensen,J. B.; Bour in, J. P.; Bjørnholm, T. Nano Lett. 2005, 5, 783.doi: 10.1021/nl050032q
-
[168]
(168) Guo, X. F.; Small, J. P.; Klare, J. E.;Wang, Y. L.; Purewal, M.S.; Tam, I.W.; Hong, B. H.; Caldwell, R.; Huang, L. M.;O'Brien, S.; Yan, J. M.; Breslow, R.;Wind, S. J.; Hone, J.;Kim, P.; Nuckolls, C. Science 2006, 311, 356. doi: 10.1126/science.1120986
-
[169]
(169) Feldmen, A.; Steigerwald, M. L.; Guo, X. F.; Nuckolls, C.Accounts Chem. Res. 2008, 41, 1731.
-
[170]
(170) Qian, S.; Guo, X. F.; Steigerwald, M. L.; Nuckolls, C. Chem. Asian J. 2010, 5, 1040. doi: 10.1002/asia.200900565
-
[171]
(171) Cao, Y.; Liu, S.; Shen, Q.; Yan, K.; Li, P. J.; Xu, J.; Yu, D. P.;Steigerwald, M. L.; Nuckolls, C.; Liu, Z. F.; Guo, X. F. Adv. Funct. Mater. 2009, 19, 2743. doi: 10.1002/adfm.v19:17
-
[172]
(172) Cao, Y.;Wei, Z. M.; Liu, S.; Shen, Q.; Gan, L.; Shi, S. J.; Guo,X. F.; Xu,W.; Steigerwald, M. L.; Liu, Z. F.; Zhu, D. B.Angew. Chem. Int. Edit. 2010, 49, 6319. doi: 10.1002/anie.201001683
-
[1]
-
-
[1]
Jin Tong , Shuyan Yu . Crystal Engineering for Supramolecular Chirality. University Chemistry, 2024, 39(3): 86-93. doi: 10.3866/PKU.DXHX202308113
-
[2]
Shicheng Yan . Experimental Teaching Design for the Integration of Scientific Research and Teaching: A Case Study on Organic Electrooxidation. University Chemistry, 2024, 39(11): 350-358. doi: 10.12461/PKU.DXHX202408036
-
[3]
Hongyun Liu , Jiarun Li , Xinyi Li , Zhe Liu , Jiaxuan Li , Cong Xiao . Course Ideological and Political Design of a Comprehensive Chemistry Experiment: Constructing a Visual Molecular Logic System Based on Intelligent Hydrogel Film Electrodes. University Chemistry, 2024, 39(2): 227-233. doi: 10.3866/PKU.DXHX202309070
-
[4]
Yong Shu , Xing Chen , Sai Duan , Rongzhen Liao . How to Determine the Equilibrium Bond Distance of Homonuclear Diatomic Molecules: A Case Study of H2. University Chemistry, 2024, 39(7): 386-393. doi: 10.3866/PKU.DXHX202310102
-
[5]
Laiying Zhang , Yinghuan Wu , Yazi Yu , Yecheng Xu , Haojie Zhang , Weitai Wu . Innovation and Practice of Polymer Chemistry Experiment Teaching for Non-Polymer Major Students of Chemistry: Taking the Synthesis, Solution Property, Optical Performance and Application of Thermo-Sensitive Polymers as an Example. University Chemistry, 2024, 39(4): 213-220. doi: 10.3866/PKU.DXHX202310126
-
[6]
Yang YANG , Pengcheng LI , Zhan SHU , Nengrong TU , Zonghua WANG . Plasmon-enhanced upconversion luminescence and application of molecular detection. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 877-884. doi: 10.11862/CJIC.20230440
-
[7]
Yuhao SUN , Qingzhe DONG , Lei ZHAO , Xiaodan JIANG , Hailing GUO , Xianglong MENG , Yongmei GUO . Synthesis and antibacterial properties of silver-loaded sod-based zeolite. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 761-770. doi: 10.11862/CJIC.20230169
-
[8]
Wenyan Dan , Weijie Li , Xiaogang Wang . The Technical Analysis of Visual Software ShelXle for Refinement of Small Molecular Crystal Structure. University Chemistry, 2024, 39(3): 63-69. doi: 10.3866/PKU.DXHX202302060
-
[9]
Shule Liu . Application of SPC/E Water Model in Molecular Dynamics Teaching Experiments. University Chemistry, 2024, 39(4): 338-342. doi: 10.3866/PKU.DXHX202310029
-
[10]
Rui Gao , Ying Zhou , Yifan Hu , Siyuan Chen , Shouhong Xu , Qianfu Luo , Wenqing Zhang . Design, Synthesis and Performance Experiment of Novel Photoswitchable Hybrid Tetraarylethenes. University Chemistry, 2024, 39(5): 125-133. doi: 10.3866/PKU.DXHX202310050
-
[11]
Wenbing Hu , Jin Zhu . Flipped Classroom Approach in Teaching Professional English Reading and Writing to Polymer Graduates. University Chemistry, 2024, 39(6): 128-131. doi: 10.3866/PKU.DXHX202310015
-
[12]
Shihui Shi , Haoyu Li , Shaojie Han , Yifan Yao , Siqi Liu . Regioselectively Synthesis of Halogenated Arenes via Self-Assembly and Synergistic Catalysis Strategy. University Chemistry, 2024, 39(5): 336-344. doi: 10.3866/PKU.DXHX202312002
-
[13]
Pingping Zhu , Yongjun Xie , Yuanping Yi , Yu Huang , Qiang Zhou , Shiyan Xiao , Haiyang Yang , Pingsheng He . Excavation and Extraction of Ideological and Political Elements for the Virtual Simulation Experiments at Molecular Level: Taking the Project “the Simulation and Computation of Conformation, Morphology and Dimensions of Polymer Chains” as an Example. University Chemistry, 2024, 39(2): 83-88. doi: 10.3866/PKU.DXHX202309063
-
[14]
Kai Yang , Gehua Bi , Yong Zhang , Delin Jin , Ziwei Xu , Qian Wang , Lingbao Xing . Comprehensive Polymer Chemistry Experiment Design: Preparation and Characterization of Rigid Polyurethane Foam Materials. University Chemistry, 2024, 39(4): 206-212. doi: 10.3866/PKU.DXHX202308045
-
[15]
Zheqi Wang , Yawen Lin , Shunliu Deng , Huijun Zhang , Jinmei Zhou . Antiviral Strategies: A Brief Review of the Development History of Small Molecule Antiviral Drugs. University Chemistry, 2024, 39(9): 85-93. doi: 10.12461/PKU.DXHX202403108
-
[16]
Jia Yao , Xiaogang Peng . Theory of Macroscopic Molecular Systems: Theoretical Framework of the Physical Chemistry Course in the Chemistry “101 Plan”. University Chemistry, 2024, 39(10): 27-37. doi: 10.12461/PKU.DXHX202408117
-
[17]
Zhengyu Zhou , Huiqin Yao , Youlin Wu , Teng Li , Noritatsu Tsubaki , Zhiliang Jin . Synergistic Effect of Cu-Graphdiyne/Transition Bimetallic Tungstate Formed S-Scheme Heterojunction for Enhanced Photocatalytic Hydrogen Evolution. Acta Physico-Chimica Sinica, 2024, 40(10): 2312010-. doi: 10.3866/PKU.WHXB202312010
-
[18]
Yufang GAO , Nan HOU , Yaning LIANG , Ning LI , Yanting ZHANG , Zelong LI , Xiaofeng LI . Nano-thin layer MCM-22 zeolite: Synthesis and catalytic properties of trimethylbenzene isomerization reaction. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1079-1087. doi: 10.11862/CJIC.20240036
-
[19]
Rui Li , Jiayu Zhang , Anyang Li . Two Levels of Understanding of Chemical Bonds: a Case of the Bonding Model of Hypervalent Molecules. University Chemistry, 2024, 39(2): 392-398. doi: 10.3866/PKU.DXHX202308051
-
[20]
Shuang Meng , Haixin Long , Zhou Zhou , Meizhu Rong . Inorganic Chemistry Curriculum Design and Implementation of Based on “Stepped-Task Driven + Multi-Dimensional Output” Model: A Case Study on Intermolecular Forces. University Chemistry, 2024, 39(3): 122-131. doi: 10.3866/PKU.DXHX202309008
-
[1]
Metrics
- PDF Downloads(1010)
- Abstract views(1159)
- HTML views(24)