Citation: ZHANG Xiao-Hua, ZHONG Jin-Di, YU Ya-Ming, ZHANG Yun-Song, LIU Bo, CHEN Jin-Hua. Well-Dispersed Platinum Nanoparticles Supported on Nitrogen-Doped Hollow Carbon Microspheres for Oxygen-Reduction Reaction[J]. Acta Physico-Chimica Sinica, ;2013, 29(06): 1297-1304. doi: 10.3866/PKU.WHXB201304011 shu

Well-Dispersed Platinum Nanoparticles Supported on Nitrogen-Doped Hollow Carbon Microspheres for Oxygen-Reduction Reaction

  • Received Date: 25 October 2012
    Available Online: 1 April 2013

    Fund Project: 长江学者和创新团队发展计划(PCSIRT) (PCSIRT) 湖南省自然科学基金(12JJ2010) (12JJ2010)高等学校年轻教师成长计划(2012) (2012)博士学科点专项科研基金(20110161110009)资助项目 (20110161110009)

  • Nitrogen-doped hollow carbon microspheres (N-HCMS) were synthesized by carbonization of poly(dopamine). Platinum (Pt) nanoparticles (NPs) were deposited onto the N-HCMS via a microwaveassisted reduction process. The morphology, surface area, and pore size distribution of the N-HCMS supported Pt catalysts (Pt/N-HCMS) were characterized by scanning electron microscopy, transmission electron microscopy, X-ray diffraction, and surface area and porosimetry measurements. The electrocatalytic properties of the Pt/N-HCMS catalyst towards oxygen-reduction reaction were investigated by cyclic voltammetry and linear sweep voltammetry. The Pt/N-HCMS catalyst showed almost double the specific mass activity of a commercial carbon supported Pt catalyst. This was attributed to a uniform dispersion of the Pt NPs and the unique mesoporous and hollow structure of N-HCMS. In addition, fast electron transfer processes were found to occur on the nitrogen doped N-HCMS and the catalyst exhibited excellent long-term stability. This work is of significance for the development of high-performance cathodic catalysts in fuel cells.

  • 加载中
    1. [1]

      (1) Borup, R.; Meyers, J.; Pivovar, B.; Kim, Y. S.; Mukundan, R.;Garland, N.; Myers, D.;Wilson, M.; Garzon, F.;Wood, D.;Zelenay, P.; More, K.; Stroh, K.; Zawodzinski, T.; Boncella, J.;McGrath, J. E.; Inaba, M.; Miyatake, K.; Hori, M.; Ota, K.;Ogumi, Z.; Miyata, S.; Nishikata, A.; Siroma, Z.; Uchimoto, Y.;Yasuda, K.; Kimijima, K. I.; Iwashita, N. Chem. Rev. 2007, 107 (10), 3904. doi: 10.1021/cr050182l

    2. [2]

      (2) (a) Lim, B.; Jiang, M.; Camar , P. H. C.; Cho, E. C.; Tao, J.;Lu, X.; Zhu, Y.; Xia, Y. Science 2009, 324 (5932), 1302.doi: 10.1126/science.1170377

    3. [3]

      (b) Bing, Y.; Liu, H.; Zhang, L.; Ghosh, D.; Zhang, J. Chem. Soc. Rev. 2010, 39 (6), 2184.

    4. [4]

      (3) Wang, C.; Daimon, H.; Onodera, T.; Koda, T.; Sun, S. Angew. Chem. Int. Edit. 2008, 47 (19), 3588.

    5. [5]

      (4) Yu, X.; Ye, S. J. Power Sources 2007, 172 (1), 145. doi: 10.1016/j.jpowsour.2007.07.048

    6. [6]

      (5) Thompson, S. D.; Jordan, L. R.; Forsyth, M. Electrochim. Acta2001, 46 (10-11), 1657.

    7. [7]

      (6) (a)Wen, Z.;Wang, Q.; Zhang, Q.; Li, J. Electrochem. Commun.2007, 9 (8), 1867. doi: 10.1016/j.elecom.2007.04.016

    8. [8]

      (b) Sun, X.; Li, Y. Angew. Chem. Int. Edit. 2004, 43 (29), 3827.

    9. [9]

      (c) Su, F.; Zhao, X. S.;Wang, Y.;Wang, L.; Lee, J. Y. J. Mater. Chem. 2006, 16 (45), 4413.

    10. [10]

      (d) Huang, H.; Remsen, E. E.; Kowalewski, T.;Wooley, K. L.J. Am. Chem. Soc. 1999, 121 (15), 3805.

    11. [11]

      (e) Han, S.; Yun, Y.; Park, K.W.; Sung, Y. E.; Hyeon, T. Adv. Mater. 2003, 15 (22), 1922.

    12. [12]

      (f) Gill, I.; Ballesteros, A. J. Am. Chem. Soc. 1998, 120 (34),8587.

    13. [13]

      (g) Du, H.; Li, B.; Kang, F.; Fu, R.; Zeng, Y. Carbon 2007, 45 (2), 429.

    14. [14]

      (7) Bang, J. H. Electrochim. Acta 2011, 56 (24), 8674. doi: 10.1016/j.electacta.2011.07.066

    15. [15]

      (8) (a) Fang, B.; Kim, J. H.; Lee, C.; Yu, J. S. J. Phys. Chem. C2007, 112 (2), 639.

    16. [16]

      (b) F?ç?c?lar, B.; Bayrakçeken, A.; Eroglu, I. Int. J. Hydrog. Energy 2010, 35 (18), 9924.

    17. [17]

      (9) (a) Jun, S.; Choi, M.; Ryu, S.; Lee, H. Y.; Ryoo, R. OrderedMesoporous Carbon Molecular Sieves with FunctionalizedSurfaces. In Studies in Surface Science and Catalysis; Sang-EonPark, R. R.W. S. A. C.W. L., Jong-San, C., Eds.; Elsevier:2003; Vol. 146, p 37.

    18. [18]

      (b) Tang, H.; Chen, J. H.; Huang, Z. P.;Wang, D. Z.; Ren, Z. F.;Nie, L. H.; Kuang, Y. F.; Yao, S. Z. Carbon 2004, 42 (1), 191.

    19. [19]

      (10) (a) Besson, E.; Mehdi, A.; Reye, C.; Corriu, R. J. P. J. Mater. Chem. 2009, 19 (27), 4746. doi: 10.1039/b902568e

    20. [20]

      (b) Yang, C. M.; Liu, P. H.; Ho, Y. F.; Chiu, C. Y.; Chao, K. J.Chem. Mater. 2002, 15 (1), 275.

    21. [21]

      (11) (a) Chen, Y.;Wang, J.; Liu, H.; Li, R.; Sun, X.; Ye, S.; Knights,S. Electrochem. Commun. 2009, 11 (10), 2071. doi: 10.1016/j.elecom.2009.09.008

    22. [22]

      (b) Saha, M. S.; Li, R.; Sun, X.; Ye, S. Electrochem. Commun.2009, 11 (2), 438.

    23. [23]

      (12) (a) Higgins, D. C.; Meza, D.; Chen, Z. J. Phys. Chem. C 2010,114 (50), 21982. doi: 10.1021/jp106814j

    24. [24]

      (b) Chen, Y.;Wang, J.; Liu, H.; Banis, M. N.; Li, R.; Sun, X.;Sham, T. K.; Ye, S.; Knights, S. J. Phys. Chem. C 2011, 115 (9),3769.

    25. [25]

      (c) Li, X.; Park, S.; Popov, B. N. J. Power Sources 2010, 195 (2), 445.

    26. [26]

      (d) Liu, Z.; Su, F.; Zhang, X.; Tay, S.W. ACS Applied Materials & Interfaces 2011, 3 (10), 3824.

    27. [27]

      (13) (a) Lefèvre, M.; Proietti, E.; Jaouen, F.; Dodelet, J. P. Science2009, 324 (5923), 71. doi: 10.1126/science.1170051

    28. [28]

      (b) Shao, Y.; Sui, J.; Yin, G.; Gao, Y. Applied Catalysis B: Environmental 2008, 79 (1), 89.

    29. [29]

      (c)Wang, X.; Dai, S. Angew. Chem. Int. Edit. 2010, 49 (37),6664.

    30. [30]

      (d) Ma, G.; Jia, R.; Zhao, J.;Wang, Z.; Song, C.; Jia, S.; Zhu, Z.J. Phys. Chem. C 2011, 115 (50), 25148.

    31. [31]

      (e) Shanmugam, S.; Osaka, T. Chem. Commun. 2011, 47 (15),4463.

    32. [32]

      (f) Yang,W.; Fellinger, T. P.; Antonietti, M. J. Am. Chem. Soc.2010, 133 (2), 206.

    33. [33]

      (g) Bezerra, C.W. B.; Zhang, L.; Lee, K.; Liu, H.; Marques, A.L. B.; Marques, E. P.;Wang, H.; Zhang, J. Electrochim. Acta2008, 53 (15), 4937.

    34. [34]

      (14) Xiao, C.; Chu, X.; Yang, Y.; Li, X.; Zhang, X.; Chen, J. Biosens. Bioelectron. 2011, 26 (6), 2934. doi: 10.1016/j.bios.2010.11.041

    35. [35]

      (15) Wu, B.; Hu, D.; Kuang, Y.; Liu, B.; Zhang, X.; Chen, J. Angew. Chem. Int. Edit. 2009, 48 (26), 4751. doi: 10.1002/anie.v48:26

    36. [36]

      (16) Maiyalagan, T.; Viswanathan, B.; Varadaraju, U. V.Electrochem. Commun. 2005, 7 (9), 905. doi: 10.1016/j.elecom.2005.07.007

    37. [37]

      (17) (a) Su, F.; Poh, C. K.; Tian, Z.; Xu, G.; Koh, G.;Wang, Z.; Liu,Z.; Lin, J. Energ. Fuel 2010, 24 (7), 3727. doi: 10.1021/ef901275q

    38. [38]

      (b) Stein, A.;Wang, Z.; Fierke, M. A. Adv. Mater. 2009, 21 (3),265.

    39. [39]

      (18) Kyotani, T.; Nagai, T.; Inoue, S.; Tomita, A. Chem. Mater. 1997,9 (2), 609. doi: 10.1021/cm960430h

    40. [40]

      (19) Ramgir, N. S.; Hwang, Y. K.; Mulla, I. S.; Chang, J. S. Solid State Sci. 2006, 8 (3-4), 359.

    41. [41]

      (20) Pozio, A.; De Francesco, M.; Cemmi, A.; Cardellini, F.; Giorgi,L. J. Power Sources 2002, 105 (1), 13. doi: 10.1016/S0378-7753(01)00921-1

    42. [42]

      (21) Xu, Y.; Lin, X. Electrochim. Acta 2007, 52 (16), 5140.doi: 10.1016/j.electacta.2007.02.037

    43. [43]

      (22) Kong, J.; Dai, H. J. Phys. Chem. B 2001, 105 (15), 2890.doi: 10.1021/jp0101312

    44. [44]

      (23) Hayashi, A.; Notsu, H.; Kimijima, K. I.; Miyamoto, J.; Yagi, I.Electrochim. Acta 2008, 53 (21), 6117. doi: 10.1016/j.electacta.2008.01.110

    45. [45]

      (24) Liu, L.; Huang, Z.;Wang, D.; Scholz, R.; Pippel, E.Nanotechnology 2011, 22 (10), 105604. doi: 10.1088/0957-4484/22/10/105604

    46. [46]

      (25) Li, Y. H.; Hung, T. H.; Chen, C.W. Carbon 2009, 47 (3), 850.doi: 10.1016/j.carbon.2008.11.048


  • 加载中
    1. [1]

      Jinyi Sun Lin Ma Yanjie Xi Jing Wang . Preparation and Electrocatalytic Nitrogen Reduction Performance Study of Vanadium Nitride@Nitrogen-Doped Carbon Composite Nanomaterials: A Recommended Comprehensive Chemistry Experiment. University Chemistry, 2024, 39(4): 184-191. doi: 10.3866/PKU.DXHX202310094

    2. [2]

      Hailang JIAHongcheng LIPengcheng JIYang TENGMingyun GUAN . Preparation and performance of N-doped carbon nanotubes composite Co3O4 as oxygen reduction reaction electrocatalysts. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 693-700. doi: 10.11862/CJIC.20230402

    3. [3]

      Tongtong Zhao Yan Wang Shiyue Qin Liang Xu Zhenhua Li . New Experiment Development: Upgrading and Regeneration of Discarded PET Plastic through Electrocatalysis. University Chemistry, 2024, 39(3): 308-315. doi: 10.3866/PKU.DXHX202309003

    4. [4]

      Zhaomei LIUWenshi ZHONGJiaxin LIGengshen HU . Preparation of nitrogen-doped porous carbons with ultra-high surface areas for high-performance supercapacitors. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 677-685. doi: 10.11862/CJIC.20230404

    5. [5]

      Xi Xu Chaokai Zhu Leiqing Cao Zhuozhao Wu Cao Guan . Experiential Education and 3D-Printed Alloys: Innovative Exploration and Student Development. University Chemistry, 2024, 39(2): 347-357. doi: 10.3866/PKU.DXHX202308039

    6. [6]

      Kai CHENFengshun WUShun XIAOJinbao ZHANGLihua ZHU . PtRu/nitrogen-doped carbon for electrocatalytic methanol oxidation and hydrogen evolution by water electrolysis. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1357-1367. doi: 10.11862/CJIC.20230350

    7. [7]

      Xiaofeng Zhu Bingbing Xiao Jiaxin Su Shuai Wang Qingran Zhang Jun Wang . Transition Metal Oxides/Chalcogenides for Electrochemical Oxygen Reduction into Hydrogen Peroxides. Acta Physico-Chimica Sinica, 2024, 40(12): 2407005-. doi: 10.3866/PKU.WHXB202407005

    8. [8]

      Guimin ZHANGWenjuan MAWenqiang DINGZhengyi FU . Synthesis and catalytic properties of hollow AgPd bimetallic nanospheres. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 963-971. doi: 10.11862/CJIC.20230293

    9. [9]

      Kaihui Huang Dejun Chen Xin Zhang Rongchen Shen Peng Zhang Difa Xu Xin Li . Constructing Covalent Triazine Frameworks/N-Doped Carbon-Coated Cu2O S-Scheme Heterojunctions for Boosting Photocatalytic Hydrogen Production. Acta Physico-Chimica Sinica, 2024, 40(12): 2407020-. doi: 10.3866/PKU.WHXB202407020

    10. [10]

      Xiutao Xu Chunfeng Shao Jinfeng Zhang Zhongliao Wang Kai Dai . Rational Design of S-Scheme CeO2/Bi2MoO6 Microsphere Heterojunction for Efficient Photocatalytic CO2 Reduction. Acta Physico-Chimica Sinica, 2024, 40(10): 2309031-. doi: 10.3866/PKU.WHXB202309031

    11. [11]

      Jiapei Zou Junyang Zhang Xuming Wu Cong Wei Simin Fang Yuxi Wang . A Comprehensive Experiment Based on Electrocatalytic Nitrate Reduction into Ammonia: Synthesis, Characterization, Performance Exploration, and Applicable Design of Copper-based Catalysts. University Chemistry, 2024, 39(6): 373-382. doi: 10.3866/PKU.DXHX202312081

    12. [12]

      Wenjiang LIPingli GUANRui YUYuansheng CHENGXianwen WEI . C60-MoP-C nanoflowers van der Waals heterojunctions and its electrocatalytic hydrogen evolution performance. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 771-781. doi: 10.11862/CJIC.20230289

    13. [13]

      Xiaoxia WANGYa'nan GUOFeng SUChun HANLong SUN . Synthesis, structure, and electrocatalytic oxygen reduction reaction properties of metal antimony-based chalcogenide clusters. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1201-1208. doi: 10.11862/CJIC.20230478

    14. [14]

      Yongming Guo Jie Li Chaoyong Liu . Green Improvement and Educational Design in the Synthesis and Characterization of Silver Nanoparticles. University Chemistry, 2024, 39(3): 258-265. doi: 10.3866/PKU.DXHX202309057

    15. [15]

      Kun WANGWenrui LIUPeng JIANGYuhang SONGLihua CHENZhao DENG . Hierarchical hollow structured BiOBr-Pt catalysts for photocatalytic CO2 reduction. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1270-1278. doi: 10.11862/CJIC.20240037

    16. [16]

      Rui PANYuting MENGRuigang XIEDaixiang CHENJiefa SHENShenghu YANJianwu LIUYue ZHANG . Selective electrocatalytic reduction of Sn(Ⅳ) by carbon nitrogen materials prepared with different precursors. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 1015-1024. doi: 10.11862/CJIC.20230433

    17. [17]

      Endong YANGHaoze TIANKe ZHANGYongbing LOU . Efficient oxygen evolution reaction of CuCo2O4/NiFe-layered bimetallic hydroxide core-shell nanoflower sphere arrays. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 930-940. doi: 10.11862/CJIC.20230369

    18. [18]

      Lina Liu Xiaolan Wei Jianqiang Hu . Exploration of Subject-Oriented Undergraduate Comprehensive Chemistry Experimental Teaching Based on the “STS Concept”: Taking the Experiment of Gold Nanoparticles as an Example. University Chemistry, 2024, 39(10): 337-343. doi: 10.12461/PKU.DXHX202405112

    19. [19]

      Guojie Xu Fang Yu Yunxia Wang Meng Sun . Introduction to Metal-Catalyzed β-Carbon Elimination Reaction of Cyclopropenones. University Chemistry, 2024, 39(8): 169-173. doi: 10.3866/PKU.DXHX202401060

    20. [20]

      Juan WANGZhongqiu WANGQin SHANGGuohong WANGJinmao LI . NiS and Pt as dual co-catalysts for the enhanced photocatalytic H2 production activity of BaTiO3 nanofibers. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1719-1730. doi: 10.11862/CJIC.20240102

Metrics
  • PDF Downloads(1433)
  • Abstract views(1138)
  • HTML views(8)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return