Citation:
	            
		            ZHANG  Peng, ZHAO  Lu Song, YAO  Jiang Hong, CAO  Ya An. Structure, Characterization and Photocatalytic Properties of TiO2 Doped with Different Content of Sn4+ Ions[J]. Acta Physico-Chimica Sinica,
							;2013, 29(06): 1305-1312.
						
							doi:
								10.3866/PKU.WHXB201303182
						
					
				
					
				
	        
- 
	                	
Pure TiO2 and Sn4+ doped TiO2 (TiO2-Snx%) photocatalysts were prepared by a sol-gel method, where x% represents the nominal molar fraction of Sn4+ ions in the Zr4+ structure. The crystal structure and energy band structure of the resultant catalysts were characterized by X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), and surface photovoltage spectroscopy (SPS).The results show that for a low content of Sn4+ ions, the Sn4+ ions are doped into the TiO2 lattice and replace lattice Ti4+ ions in a substitute mode (Ti1-xSnxO2). The energy levels of these Sn4+ ions are located 0.38 eV below the conduction band. Moreover, the rutile SnO2 crystal structure evolves with increasing content of Sn4+ ions, i.e., a TiO2/SnO2 structure is formed. The conduction band of SnO2 is located 0.33 eV lower than that of TiO2. The separation and recombination mechanism of the photo-generated carriers was characterized by photoluminescence and transient photovoltage techniques. The results showed that the formation of the energy levels of Sn4+ ions and the conduction band of rutile SnO2 can enhance the separation of the photogenerated carriers, and suppress the recombination of photo-generated carriers. However, the energy levels of Sn4+ can lead to a much longer life time and higher separation efficiency of the photo-generated carriers. For different content of Sn4+ in Sn4+ ion doped TiO2(TiO2-Snx%), the abovementioned aspects improve the photocatalytic activity.
 - 
	                	
	                 - 
	                	
- 
			
                    [1]
                
			
(1) Fujishima, A.; Honda, K. Nature 1972, 238, 37. doi: 10.1038/238037a0
 - 
			
                    [2]
                
			
(2) Grätzel, M. Nature 2001, 414, 338. doi: 10.1038/35104607
 - 
			
                    [3]
                
			
(3) Khan, S.; Al-Shahry, M.; Ingler,W. Science 2002, 297, 2243.doi: 10.1126/science.1075035
 - 
			
                    [4]
                
			
(4) Yu, H.; Chen, S.; Quan, X.; Zhao, H.; Zhang, Y. Environ. Sci. Technol. 2008, 42, 3791. doi: 10.1021/es702948e
 - 
			
                    [5]
                
			
(5) Asahi, R.; Morikawa, T.; Ohwaki, K.; Aoki, K.; Taga, Y. Science2001, 293, 269. doi: 10.1126/science.1061051
 - 
			
                    [6]
                
			
(6) Francioso, L.; Presicce, D.; Siciliano, P.; Ficarella, A. Sensors and Actuators B 2007, 123, 516. doi: 10.1016/j.snb.2006.09.037
 - 
			
                    [7]
                
			
(7) Zhao,W.; Ma,W.; Chen, C.; Zhao, J.; Shuai, Z. J. Am. Chem. Soc. 2004, 126, 4782. doi: 10.1021/ja0396753
 - 
			
                    [8]
                
			
(8) Zhang, J.;Wu, Y.; Xing, M.; Leghari, S.; Sajjad, S. Energy Environ. Sci. 2010, 3, 715. doi: 10.1039/b927575d
 - 
			
                    [9]
                
			
(9) Ji, P.; Takeuchi, M.; Cuong, T.; Zhang, J.; Matsuoka, M.; Anpo,M. Research on Chemical Intermediates 2010, 36, 327.doi: 10.1007/s11164-010-0142-5
 - 
			
                    [10]
                
			
(10) Luo, D. C.; Zhang, L. L.; Long, H. J.; Chen, Y. M.; Cao, Y. A.Acta Phys. -Chim. Sin. 2008, 24, 1095. [罗大超, 张兰兰, 龙绘锦, 陈咏梅, 曹亚安. 物理化学学报, 2008, 24, 1095.]doi: 10.3866/PKU.WHXB20080632
 - 
			
                    [11]
                
			
(11) Li, K. Y.; Guo, J.; Liu, T.; Zhou, B. J.; Li, Y. Acta Phys. -Chim. Sin. 2008, 24, 2096. [李葵英, 郭静, 刘通, 周冰晶,李悦. 物理化学学报, 2008, 24, 2096.] doi: 10.3866/PKU.WHXB20081127
 - 
			
                    [12]
                
			
(12) Zhou, X.; Lu, J.; Li, L.;Wang, Z. Journal of Nanomaterials2011, 2011, 432947.
 - 
			
                    [13]
                
			
(13) Mahanty, S.; Roy, S.; Sen, S. Journal of Crystal Growth 2004,261, 77. doi: 10.1016/j.jcrysgro.2003.09.023
 - 
			
                    [14]
                
			
(14) Gu, Q.; Long, J.; Zhou, Y.; Yuan, R.; Lin, H.;Wang, X. Journal of Catalysis 2012, 289, 88. doi: 10.1016/j.jcat.2012.01.018
 - 
			
                    [15]
                
			
(15) Zheng, T.; Tian, Z.; Sun, J. X.; Su, B. T.; Lei, Z. Q. Chemical Research and Application 2012, 24, 1. [郑焘, 田泽, 孙佳星, 苏碧桃, 雷自强. 化学研究与应用, 2012, 24, 1.]
 - 
			
                    [16]
                
			
(16) Duan, Y.; Fu, N.; Liu, Q.; Fang, Y.; Zhou, X.; Zhang, J.; Lin, Y.J. Phys. Chem. C 2012, 116, 8888. doi: 10.1021/jp212517k
 - 
			
                    [17]
                
			
(17) Cao, Y.; He, T.; Zhao, L.;Wang, E.; Yang,W.; Cao, Y. J. Phys. Chem. C 2009, 113, 18121. doi: 10.1021/jp9069288
 - 
			
                    [18]
                
			
(18) Cao, Y.; Yang, Y.; Zhang,W.; Liu, G.; Yue, P. New J. Chem.2004, 28, 218. doi: 10.1039/b306845e
 - 
			
                    [19]
                
			
(19) Wang, Y.; Ma, C.; Sun, X.; Li, H. Nanotechnology 2002, 13,565. doi: 10.1088/0957-4484/13/5/304
 - 
			
                    [20]
                
			
(20) Li, J.; Zeng, H. J. Am. Chem. Soc. 2007, 129, 15839.doi: 10.1021/ja073521w
 - 
			
                    [21]
                
			
(21) Xu, H.; Zhang, L. J. Phys. Chem. C 2010, 114, 11534.doi: 10.1021/jp1027965
 - 
			
                    [22]
                
			
(22) Bullock, E.; Patthey, L.; Steinemann, S. Surface Science 1996,352, 504. doi: 10.1016/0039-6028(95)01188-9
 - 
			
                    [23]
                
			
(23) Li, D.; Haneda, H.; Hishita, D.; Ohashi, N. Chem. Mater. 2005,17, 2596. doi: 10.1021/cm049099p
 - 
			
                    [24]
                
			
(24) Serpone, N.; Lawless, D.; Khairutdinov, R. J. Phys. Chem.1995, 99, 16646. doi: 10.1021/j100045a026
 - 
			
                    [25]
                
			
(25) Yuan, J.;Wu, Q.; Zhang, P.; Yao, J.; He, T.; Cao, Y. Environ. Sci. Technol. 2012, 46, 2330. doi: 10.1021/es203333k
 
 - 
			
                    [1]
                
			
 - 
	                	
						
						
						
						
	                 - 
	                	
- 
				[1]
				
Zilin Hu , Yaoshen Niu , Xiaohui Rong , Yongsheng Hu . Suppression of Voltage Decay through Ni3+ Barrier in Anionic-Redox Active Cathode for Na-Ion Batteries. Acta Physico-Chimica Sinica, 2024, 40(6): 2306005-0. doi: 10.3866/PKU.WHXB202306005
 - 
				[2]
				
Ying Li , Yushen Zhao , Kai Chen , Xu Liu , Tingfeng Yi , Li-Feng Chen . Rational Design of Cross-Linked N-Doped C-Sn Nanofibers as Free-Standing Electrodes towards High-Performance Li-Ion Battery Anodes. Acta Physico-Chimica Sinica, 2024, 40(3): 2305007-0. doi: 10.3866/PKU.WHXB202305007
 - 
				[3]
				
Xinlong WANG , Zhenguo CHENG , Guo WANG , Xiaokuen ZHANG , Yong XIANG , Xinquan WANG . Enhancement of the fragile interface of high voltage LiCoO2 by surface gradient permeation of trace amounts of Mg/F. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 571-580. doi: 10.11862/CJIC.20230259
 - 
				[4]
				
Qingtang ZHANG , Xiaoyu WU , Zheng WANG , Xiaomei WANG . Performance of nano Li2FeSiO4/C cathode material co-doped by potassium and chlorine ions. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1689-1696. doi: 10.11862/CJIC.20240115
 - 
				[5]
				
Zizheng LU , Wanyi SU , Qin SHI , Honghui PAN , Chuanqi ZHAO , Chengfeng HUANG , Jinguo PENG . Surface state behavior of W doped BiVO4 photoanode for ciprofloxacin degradation. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 591-600. doi: 10.11862/CJIC.20230225
 - 
				[6]
				
Aoyu Huang , Jun Xu , Yu Huang , Gui Chu , Mao Wang , Lili Wang , Yongqi Sun , Zhen Jiang , Xiaobo Zhu . Tailoring Electrode-Electrolyte Interfaces via a Simple Slurry Additive for Stable High-Voltage Lithium-Ion Batteries. Acta Physico-Chimica Sinica, 2025, 41(4): 2408007-0. doi: 10.3866/PKU.WHXB202408007
 - 
				[7]
				
Chongjing Liu , Yujian Xia , Pengjun Zhang , Shiqiang Wei , Dengfeng Cao , Beibei Sheng , Yongheng Chu , Shuangming Chen , Li Song , Xiaosong Liu . Understanding Solid-Gas and Solid-Liquid Interfaces through Near Ambient Pressure X-Ray Photoelectron Spectroscopy. Acta Physico-Chimica Sinica, 2025, 41(2): 2309036-0. doi: 10.3866/PKU.WHXB202309036
 - 
				[8]
				
Tieping CAO , Yuejun LI , Dawei SUN . Surface plasmon resonance effect enhanced photocatalytic CO2 reduction performance of S-scheme Bi2S3/TiO2 heterojunction. Chinese Journal of Inorganic Chemistry, 2025, 41(5): 903-912. doi: 10.11862/CJIC.20240366
 - 
				[9]
				
Jie WU , Zhihong LUO , Xiaoli CHEN , Fangfang XIONG , Li CHEN , Biao ZHANG , Bin SHI , Quansheng OUYANG , Jiaojing SHAO . Critical roles of AlPO4 coating in enhancing cycling stability and rate capability of high voltage LiNi0.5Mn1.5O4 cathode materials. Chinese Journal of Inorganic Chemistry, 2025, 41(5): 948-958. doi: 10.11862/CJIC.20240400
 - 
				[10]
				
Xin XIONG , Qian CHEN , Quan XIE . First principles study of the photoelectric properties and magnetism of La and Yb doped AlN. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1519-1527. doi: 10.11862/CJIC.20240064
 - 
				[11]
				
Fei ZHOU , Xiaolin JIA . Co3O4/TiO2 composite photocatalyst: Preparation and synergistic degradation performance of toluene. Chinese Journal of Inorganic Chemistry, 2024, 40(11): 2232-2240. doi: 10.11862/CJIC.20240236
 - 
				[12]
				
Cheng PENG , Jianwei WEI , Yating CHEN , Nan HU , Hui ZENG . First principles investigation about interference effects of electronic and optical properties of inorganic and lead-free perovskite Cs3Bi2X9 (X=Cl, Br, I). Chinese Journal of Inorganic Chemistry, 2024, 40(3): 555-560. doi: 10.11862/CJIC.20230282
 - 
				[13]
				
Wenxu Liu , Feng Han , Boxuan Wang , Huayi Liu , Xiaobin Gu , Xin Zhang , Yao Liu . Comprehensive Chemical Experiment: Design, Synthesis, and Photoelectronic Properties Study of Fully Non-Fused Ring Electron Acceptors. University Chemistry, 2025, 40(10): 263-275. doi: 10.12461/PKU.DXHX202412021
 - 
				[14]
				
Qing Xue , Shengyi Li , Yanan Zhao , Peng Sheng , Li Xu , Zhengxi Li , Bo Zhang , Hui Li , Bo Wang , Libin Yang , Yuliang Cao , Zhongxue Chen . Novel Alkaline Sodium-Ion Battery Capacitor Based on Active Carbon||Na0.44MnO2 towards Low Cost, High-Rate Capability and Long-Term Lifespan. Acta Physico-Chimica Sinica, 2024, 40(2): 2303041-0. doi: 10.3866/PKU.WHXB202303041
 - 
				[15]
				
Xin Zhou , Yiting Huo , Songyu Yang , Bowen He , Xiaojing Wang , Zhen Wu , Jianjun Zhang . Understanding the effect of pH on protonated COF during photocatalytic H2O2 production by femtosecond transient absorption spectroscopy. Acta Physico-Chimica Sinica, 2025, 41(12): 100160-0. doi: 10.1016/j.actphy.2025.100160
 - 
				[16]
				
Ya-Nan Yang , Zi-Sheng Li , Sourav Mondal , Lei Qiao , Cui-Cui Wang , Wen-Juan Tian , Zhong-Ming Sun , John E. McGrady . Metal-metal bonds in Zintl clusters: Synthesis, structure and bonding in [Fe2Sn4Bi8]3– and [Cr2Sb12]3–. Chinese Chemical Letters, 2024, 35(8): 109048-. doi: 10.1016/j.cclet.2023.109048
 - 
				[17]
				
Huasen Lu , Shixu Song , Qisen Jia , Guangbo Liu , Luhua Jiang . Advances in Cu2O-based Photocathodes for Photoelectrochemical Water Splitting. Acta Physico-Chimica Sinica, 2024, 40(2): 2304035-0. doi: 10.3866/PKU.WHXB202304035
 - 
				[18]
				
Xing Xiao , Yunling Jia , Wanyu Hong , Yuqing He , Yanjun Wang , Lizhi Zhao , Huiqin An , Zhen Yin . Sulfur-defective ZnIn2S4 nanosheets decorated by TiO2 nanosheets with exposed {001} facets to accelerate charge transfer for efficient photocatalytic hydrogen evolution. Chinese Journal of Structural Chemistry, 2024, 43(12): 100474-100474. doi: 10.1016/j.cjsc.2024.100474
 - 
				[19]
				
Jiali Lei , Juan Wang , Wenhui Zhang , Guohong Wang , Zihui Liang , Jinmao Li . TiO2/CdIn2S4 S-scheme heterojunction photocatalyst promotes photocatalytic hydrogen evolution coupled vanillyl alcohol oxidation. Acta Physico-Chimica Sinica, 2025, 41(12): 100174-0. doi: 10.1016/j.actphy.2025.100174
 - 
				[20]
				
Qinjin DAI , Shan FAN , Pengyang FAN , Xiaoying ZHENG , Wei DONG , Mengxue WANG , Yong ZHANG . Performance of oxygen vacancy-rich V-doped MnO2 for high-performance aqueous zinc ion battery. Chinese Journal of Inorganic Chemistry, 2025, 41(3): 453-460. doi: 10.11862/CJIC.20240326
 
 - 
				[1]
				
 
Metrics
- PDF Downloads(688)
 - Abstract views(980)
 - HTML views(26)
 
 
Login In
	                    
	                    
	                    
	                    
DownLoad: