Citation: WANG Chang-Sheng, LIU Peng, YU Nan. Site-Preference of Uracil and Thymine Hydrogen Bonding to Quercetin[J]. Acta Physico-Chimica Sinica, ;2013, 29(06): 1173-1182. doi: 10.3866/PKU.WHXB201303153
-
Exploring the binding features between small drug molecules and biomolecules is particularly important because it can provide valuable information for understanding the interaction mechanism and therefore rationally designing, modifying and screening of new drugs. In this paper, the site-preference of the nucleic acid bases uracil and thymine hydrogen bonding to the small medical molecule quercetin is investigated using the density functional theory method. Thirty stable hydrogen-bonded complexes were located at the B3LYP/6-31G(d) level of theory. The binding energies for these complexes were further evaluated at the B3LYP/6-311++G(3df,2p) level of theory with the basis set superposition error corrections. The results indicate that quercetin can interact with uracil or thymine through five binding sites, which herein we refer to as Site qu1, Site qu2, Site qu3, Site qu4, and Site qu5, and uracil (or thymine) can interact with quercetin through three binding sites, which herein we refer to as Site u1, Site u2, and Site u3 (or Site t1, Site t2, and Site t3). We found that once the binding site of quercetin is fixed, the hydrogen bonds formed through uracil Site u1 and thymine Site t1 are the strongest, while those formed through uracil Site u2 and thymine Site t2 are the weakest. When the binding site of uracil or thymine is fixed, the hydrogen bonds formed through the quercetin Site qu1 are the strongest, followed by those formed through quercetin Site qu5, while those formed through quercetin Site qu3 are the weakest. Atoms in molecules (AIM) and natural bond orbital (NBO) analyses were also carried out to explore the interaction nature of these hydrogen-bonded complexes.
-
-
[1]
(1) Trouillas, P.; Marsal, P.; Siri, D.; Lazzaroni, R.; Duroux, J. L.Food Chem. 2006, 97, 679. doi: 10.1016/j.foodchem.2005.05.042
-
[2]
(2) Lespade, L.; Bercion, S. J. Phys. Chem. B 2010, 114, 921. doi: 10.1021/jp9041809
-
[3]
(3) Guzzo, M. R.; Uemi, M.; Donate, P. M.; Nikolaou, S.; Machado,A. E. H.; Okano, L. T. J. Phys. Chem. A 2006, 110, 10545. doi: 10.1021/jp0613337
-
[4]
(4) Chakraborty, S.; Biswas, P. K. J. Phys. Chem. A 2012, 116,8775. doi: 10.1021/jp303543z
-
[5]
(5) Estévez, L.; Mosquera, R. A. J. Phys. Chem. A 2007, 111,11100. doi: 10.1021/jp074941a
-
[6]
(6) Leopoldini, M.; Marino, T.; Russo, N.; Toscano, M. Theor.Chem. Acc. 2004, 111, 210. doi: 10.1007/s00214-003-0544-1
-
[7]
(7) Lee, S.; Shin, S. Y.; Lee, Y.; Park, Y.; Kim, B. G.; Ahn, J. H.;Chong, Y.; Lee, Y. H.; Lim, Y. Bioorg. Med. Chem. Lett. 2011,21, 3866. doi: 10.1016/j.bmcl.2011.05.043
-
[8]
(8) Kang, J.W.; Zhuo, L.; Lu, X. Q.; Liu, H. D.; Zhang, M.;Wu, H.X. J. Inorg. Biochem. 2004, 98, 79. doi: 10.1016/j.jinorgbio.2003.08.015
-
[9]
(9) Bhuva, H. A.; Kini, S. G. J. Mol. Graph. Model. 2010, 29, 32.doi: 10.1016/j.jmgm.2010.04.003
-
[10]
(10) Zhang, M.; Lv, Q. L.; Yue, N. N.;Wang, H. Y. Spectrochim.Acta A 2009, 72, 572. doi: 10.1016/j.saa.2008.10.045
-
[11]
(11) Cornard, J. P.; Merlin, J. C. J. Mol. Struct. 2003, 651-653, 381.
-
[12]
(12) Mukai, K.; Oka,W.;Watanabe, K.; Egawa, Y.; Nagaoka, S. I.J. Phys. Chem. A 1997, 101, 3746. doi: 10.1021/jp9706745
-
[13]
(13) Ni, Y. N.; Du, S.; Kokot, S. Anal. Chim. Acta 2007, 584, 19.doi: 10.1016/j.aca.2006.11.006
-
[14]
(14) Ren, J.; Meng, S.; Lekka, C. E.; Kaxiras, E. J. Phys. Chem. B2008, 112, 1845. doi: 10.1021/jp076881e
-
[15]
(15) Leopoldini, M.; Russo, N.; Chiodo, S.; Toscano, M. J. Agric.Food Chem. 2006, 54, 6343. doi: 10.1021/jf060986h
-
[16]
(16) Lekka, C. E.; Ren, J.; Meng, S.; Kaxiras, E. J. Phys. Chem. B2009, 113, 6478. doi: 10.1021/jp807948z
-
[17]
(17) Leopoldini, M.; Marino, T.; Russo, N.; Toscano, M. J. Phys.Chem. A 2004, 108, 4916. doi: 10.1021/jp037247d
-
[18]
(18) Lemańska, K.; Szymusiak, H.; Tyrakowska, B.; Zieliński, R.;Soffers, A. E. M. F.; Rietjens, I. M. C. M. Free Raobc. Med.2001, 7, 869.
-
[19]
(19) Plaper, A.; lob, M.; Hafner, I.; Oblak, M.; Šolmajer, T.;Jerala, R. Biochem. Biophys. Res. Commun. 2003, 306, 530.doi: 10.1016/S0006-291X(03)01006-4
-
[20]
(20) Solimani, R. Biochim. Biophys. Acta 1997, 1336, 281. doi: 10.1016/S0304-4165(97)00038-X
-
[21]
(21) Zhang, C. S.; Lai, L. H. Acta Phys. -Chim. Sin. 2012, 28 (10),2363. [张长胜, 来鲁华. 物理化学学报, 2012, 28 (10), 2363.]doi: 10.3866/PKU.WHXB201209172
-
[22]
(22) Huang, Y. Y.; Yang, X. F.; Li, H. T.; Ji, X. F.; Cheng, H. L.;Zhao, Y. J.; Guo, D. C.; Li, L.; Liu, S. Y. Acta Phys. -Chim. Sin.2012, 28 (10), 2390. [黄阳玉, 阳秀凤, 李昊田, 纪晓峰, 程洪礼, 赵蕴杰, 郭大川, 李林, 刘士勇. 物理化学学报, 2012, 28 (10), 2390.] doi: 10.3866/PKU.WHXB201209111
-
[23]
(23) Zhang, M.; Zheng, Y. P.; Jiang, X. N.;Wang, C. S. ActaPhys. -Chim. Sin. 2010, 26 (3), 735. [张敏, 郑艳萍, 姜笑楠, 王长生. 物理化学学报, 2010, 26 (3), 735.] doi: 10.3866/PKU.WHXB20100235
-
[24]
(24) Liu, D. J.;Wang, C. S. Acta Phys. -Chim. Sin. 2012, 28 (12),2809. [刘冬佳, 王长生. 物理化学学报, 2012, 28 (12), 2809.]doi: 10.3866/PKU.WHXB201209263
-
[25]
(25) Dong, H.; Hua,W. J.; Li, S. H. J. Phys. Chem. A 2007, 111,2941. doi: 10.1021/jp0709860
-
[26]
(26) Jiang, X. N.;Wang, C. S. Sci. China Ser. Chem. 2010, 8, 1754.
-
[27]
(27) Li, Y.;Wang, C. S. Sci. China Ser. Chem. 2011, 54 (11), 1759.doi: 10.1007/s11426-011-4411-y
-
[28]
(28) Kobko, R.; Dannenberg, J. J. J. Phys. Chem. A 2003, 107,10389. doi: 10.1021/jp0365209
-
[29]
(29) Wu, Y. D.; Zhao, Y. L. J. Am. Chem. Soc. 2001, 123, 5313.doi: 10.1021/ja003482n
-
[30]
(30) Frish, M. J.; Trucks, G.W.; Schlegel, H. B.; et al. Gassian 03,Revision D.01; Gaussian Inc.: Pittsburgh, PA, 2003.
-
[31]
(31) Biegler, K. F.; Schonbohm, J.; Bayles, D. J. Comput. Chem.2001, 22, 545.
-
[32]
(32) Yang, Y. J. Phys. Chem. A 2012, 116, 10150. doi: 10.1021/jp304420c
-
[33]
(33) Yang, Y. J. Phys. Chem. A 2011, 115, 9043. doi: 10.1021/jp204531e
-
[34]
(34) Zhao, G. J.; Liu, J. Y.; Zhou, L. C.; Han, K. L. J. Phys. Chem. B2007, 111, 8940.
-
[35]
(35) Zhao, G. J.; Han, K. L. Accounts Chem. Res. 2012, 45, 404. doi: 10.1021/ar200135h
-
[1]
-
-
[1]
Rong Tian , Yadi Yang , Naihao Lu . Comprehensive Experimental Design of Undergraduate Students Based on Interdisciplinarity: Study on the Effect of Quercetin on Chlorination Activity of Myeloperoxidase. University Chemistry, 2024, 39(8): 247-254. doi: 10.3866/PKU.DXHX202312064
-
[2]
Yinglian LI , Chengcheng ZHANG , Xinyu ZHANG , Xinyi WANG . Spin crossover in [Co(pytpy)2]2+ complexes modified by organosulfonate anions. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1162-1172. doi: 10.11862/CJIC.20240087
-
[3]
Aidang Lu , Yunting Liu , Yanjun Jiang . Comprehensive Organic Chemistry Experiment: Synthesis and Characterization of Triazolopyrimidine Compounds. University Chemistry, 2024, 39(8): 241-246. doi: 10.3866/PKU.DXHX202401029
-
[4]
Yaling Chen . Basic Theory and Competitive Exam Analysis of Dynamic Isotope Effect. University Chemistry, 2024, 39(8): 403-410. doi: 10.3866/PKU.DXHX202311093
-
[5]
Wenyan Dan , Weijie Li , Xiaogang Wang . The Technical Analysis of Visual Software ShelXle for Refinement of Small Molecular Crystal Structure. University Chemistry, 2024, 39(3): 63-69. doi: 10.3866/PKU.DXHX202302060
-
[6]
Simin Fang , Hong Wu , Wei Liu , Wei Wei , Hongyan Feng , Wan Li . Construction and Application of Teaching Resources for Inorganic and Analytical Chemistry Experimental Course in the Context of Digital Empowerment. University Chemistry, 2024, 39(10): 156-163. doi: 10.3866/PKU.DXHX202402053
-
[7]
Wanqun Hu , Pingping Zhu , Yuan Zheng , Wanqun Zhang , Wei Shao , Hong Wu , Qiang Zhou , Kaiping Yang , Xiang Sheng . Design and Practice of Ideological and Political Case Study in Instrumental Analysis Experiment Course: the Extraction and Structural Identification of Artemisinin. University Chemistry, 2024, 39(2): 203-207. doi: 10.3866/PKU.DXHX202310062
-
[8]
Liwei Wang , Guangran Ma , Li Wang , Fugang Xu . A Comprehensive Analytical Chemistry Experiment: Colorimetric Detection of Vitamin C Using Nanozyme and Smartphone. University Chemistry, 2024, 39(8): 255-262. doi: 10.3866/PKU.DXHX202312094
-
[9]
Jiarong Feng , Yejie Duan , Chu Chu , Dezhen Xie , Qiu'e Cao , Peng Liu . Preparation and Application of a Streptomycin Molecularly Imprinted Electrochemical Sensor: A Suggested Comprehensive Analytical Chemical Experiment. University Chemistry, 2024, 39(8): 295-305. doi: 10.3866/PKU.DXHX202401016
-
[10]
Linhan Tian , Changsheng Lu . Discussion on Sextuple Bonding in Diatomic Motifs of Chromium Family Elements. University Chemistry, 2024, 39(8): 395-402. doi: 10.3866/PKU.DXHX202401056
-
[11]
Rui Li , Jiayu Zhang , Anyang Li . Two Levels of Understanding of Chemical Bonds: a Case of the Bonding Model of Hypervalent Molecules. University Chemistry, 2024, 39(2): 392-398. doi: 10.3866/PKU.DXHX202308051
-
[12]
Yong Shu , Xing Chen , Sai Duan , Rongzhen Liao . How to Determine the Equilibrium Bond Distance of Homonuclear Diatomic Molecules: A Case Study of H2. University Chemistry, 2024, 39(7): 386-393. doi: 10.3866/PKU.DXHX202310102
-
[13]
Zhuomin Zhang , Hanbing Huang , Liangqiu Lin , Jingsong Liu , Gongke Li . Course Construction of Instrumental Analysis Experiment: Surface-Enhanced Raman Spectroscopy for Rapid Detection of Edible Pigments. University Chemistry, 2024, 39(2): 133-139. doi: 10.3866/PKU.DXHX202308034
-
[14]
Zhenli Sun , Ning Wang , Kexin Lin , Qin Dai , Yufei Zhou , Dandan Cao , Yanfeng Dang . Visual Analysis of Hotspots and Development Trends in Analytical Chemistry Education Reform. University Chemistry, 2024, 39(11): 57-64. doi: 10.12461/PKU.DXHX202403095
-
[15]
Junjie Zhang , Yue Wang , Qiuhan Wu , Ruquan Shen , Han Liu , Xinhua Duan . Preparation and Selective Separation of Lightweight Magnetic Molecularly Imprinted Polymers for Trace Tetracycline Detection in Milk. University Chemistry, 2024, 39(5): 251-257. doi: 10.3866/PKU.DXHX202311084
-
[16]
Zhening Lou , Quanxing Mao , Xiaogeng Feng , Lei Zhang , Xu Xu , Yuyang Zhang , Xueyan Liu , Hongling Kang , Dongyang Feng , Yongku Li . Practice of Implementing Blended Teaching in Shared Analytical Chemistry Course. University Chemistry, 2024, 39(2): 263-269. doi: 10.3866/PKU.DXHX202308089
-
[17]
Yan Zhang , Ping Wang , Tiebo Xiao , Futing Zi , Yunlong Chen . Measures for Ideological and Political Construction in Analytical Chemistry Curriculum. University Chemistry, 2024, 39(4): 255-260. doi: 10.3866/PKU.DXHX202401017
-
[18]
Xiaofei Zhou , Yu-Qing Cao , Feng Zhu , Li Qi , Linhai Liu , Ni Yan , Zhiqiang Zhu . Missions and Challenges of Instrumental Analysis Course in the New Era. University Chemistry, 2024, 39(6): 174-180. doi: 10.3866/PKU.DXHX202310058
-
[19]
Wenliang Wang , Weina Wang , Sufan Wang , Tian Sheng , Tao Zhou , Nan Wei . “Schrödinger Equation – Approximate Models – Core Concepts – Simple Applications”: Constructing a Logical Framework and Knowledge Graph of Atom and Molecule Structures. University Chemistry, 2024, 39(8): 338-343. doi: 10.3866/PKU.DXHX202312084
-
[20]
Zunxiang Zeng , Yuling Hu , Yufei Hu , Hua Xiao . Analysis of Plant Essential Oils by Supercritical CO2Extraction with Gas Chromatography-Mass Spectrometry: An Instrumental Analysis Comprehensive Experiment Teaching Reform. University Chemistry, 2024, 39(3): 274-282. doi: 10.3866/PKU.DXHX202309069
-
[1]
Metrics
- PDF Downloads(612)
- Abstract views(984)
- HTML views(32)