Citation:
LI Lu, LI Yi, GUO Xin, ZHANG Yong-Fan, CHEN Wen-Kai. Adsorption and Dissociation of Water on HfO2(111) and (110) Surfaces[J]. Acta Physico-Chimica Sinica,
;2013, 29(05): 937-945.
doi:
10.3866/PKU.WHXB201303081
-
First-principles calculations based on density functional theory (DFT) with the generalized gradient approximation (GGA-PW91) have been used to investigate the adsorption and dissociation of H2O molecules on HfO2(111) and (110) surfaces at different sites with different coverages. It was found that the surface hafnium atom was the active adsorption position of the (111) and (110) surfaces when compared different adsorption energies and various geometrical parameters. Adsorption energies of water on the HfO2 (111) and (110) surfaces varied slightly as the coverage increased. It was shown that the most favorable configuration of H2O on the HfO2(111) and (110) surfaces corresponded to the coordination of H2O via its oxygen to a surface hafnium atom. Adsorption geometries, Mulliken population charges, density of states, and frequency calculations for HfO2-OH, HfO2-O, and HfO2-H at both surfaces were also carried out. The results showed that the hydroxyl group interacted with the surface by its oxygen atom to surface hafnium atoms. Isolated oxygen atoms bound to surface hafnium and oxygen atoms, while hydrogen atoms interact only with surface oxygen atoms to form hydroxyl groups. For the dissociation reaction, according to transition searching, H2O→H (ads)+OH (ads). The energy barriers were endothermic by 9.7 and 17.3 kJ· mol-1 for the (111) surfaces and exothermic by -59.9 and -47.6 kJ·mol-1 for the (110) surfaces.
-
Keywords:
-
Ddensity functional theory
, - HfO2,
- H2O molecule,
- Adsorption,
- Dissociation
-
-
-
-
[1]
(1) Lee, S. J.; Jeon, T. S.; Kwong, D. L.; Clark, R. J. Appl. Phys.2002, 92, 2807. doi: 10.1063/1.1500420
-
[2]
(2) Wilk, G. D.;Wallace, R. M.; Anthony, J. M. J. Appl. Phys. 2001,89, 5243. doi: 10.1063/1.1361065
-
[3]
(3) Yeo, Y.; King, T.; Hu, C. J. Appl. Phys. 2002, 92, 7266. doi: 10.1063/1.1521517
-
[4]
(4) Aarik, J.; Mandar, H.; Kirm, M.; Pung, L. Thin Solid Films2004, 466, 41. doi: 10.1016/j.tsf.2004.01.110
-
[5]
(5) Terki, R.; Feraoun, H.; Bertrand, G.; Aourag, H. Comput. Mater.Sci. 2005, 33, 44. doi: 10.1016/j.commatsci.2004.12.059
-
[6]
(6) Cockayn, E. Phys. Rev. B 2007, 75, 094103. doi: 10.1103/PhysRevB.75.094103
-
[7]
(7) Mavrou, G.; Galata, S.; Tsipas, P.; Sotiropoulos, A.;Panayiotatos, Y.; Dimoulas, A.; Evangelou, E. K.; Seo, J.W.;Dieker, C. J. Appl. Phys. 2008, 103, 014506.
-
[8]
(8) Atashi, B. M.; Javier, F. S.; Charles, B. M. Phys. Rev. B 2006,73, 115330. doi: 10.1103/PhysRevB.73.115330
-
[9]
(9) Ryshkewitch, E.; Richerson, D.W. Oxide Ceramics, PhysicalChemistry and Technology; Academic: Floride, 1985.
-
[10]
(10) Waldorf, A. J.; Dobrowolski, J. A.; Sullivan, B. T.; Plante, L. M.Appl. Opt. 1993, 32, 5583. doi: 10.1364/AO.32.005583
-
[11]
(11) He, G.; Zhu, L. Q.; Liu, M.; Zhang, Q. Appl. Surf. Sci. 2007,253, 3413. doi: 10.1016/j.apsusc.2006.07.055
-
[12]
(12) Mukhopadhyay, A. B.; Musgrave, C. B.; Sanz, J. F. J. Am.Chem. Soc. 2008, 130, 11996. doi: 10.1021/ja801616u
-
[13]
(13) Biercuk, M. J.; Mason, N.; Marcus, C. M. Nano Lett. 2004, 4, 1.
-
[14]
(14) Widjaja, Y.; Musgrave, C. B. J. Chem. Phys. 2002, 117, 1931.doi: 10.1063/1.1495847
-
[15]
(15) Alam, M. A.; Green, M. L. J. Appl. Phys. 2003, 94, 3403. doi: 10.1063/1.1599978
-
[16]
(16) Fihol, J. S.; Neurock, M. Angew. Chem. Int. Edit. 2006, 45, 402.doi: 10.1002/(ISSN)1521-3773
-
[17]
(17) khale, A. A.; Dumesic, J. A.; Mavrikakis, M. J. Am. Chem.Soc. 2008, 130, 1402. doi: 10.1021/ja0768237
-
[18]
(18) Phatak, A. A.; Delgass,W. N.; Riberiro, F. H.; Scheider,W. F.J. Phys. Chem. C 2009, 113, 7269. doi: 10.1021/jp810216b
-
[19]
(19) Zhang, J. L.;Wang, C.; Fu, Y.; Che, Y. C.; Zhou, C.W. ACSNano 2011, 5, 3284. doi: 10.1021/nn2004298
-
[20]
(20) Javey, A.; Guo, J.; Farmer, D. B.;Wang, Q. Nano Lett. 2004, 4,447. doi: 10.1021/nl035185x
-
[21]
(21) Wang, T.; Ekerdt, J. G. Chem. Mater. 2009, 21, 3096. doi: 10.1021/cm9001064
-
[22]
(22) Iskandarova, I. M.; Knizhnik, A. A.; Rykova, E. A.;Bagaturyants, A. A.; Potapkin, B. V.; Korkin, A. A.Microelectron. Eng. 2003, 69, 587. doi: 10.1016/S0167-9317(03)00350-2
-
[23]
(23) Atashi, B.; Mukhopadhyay, J. F. S.; Musgrave, C. B. Chem.Mater. 2006, 18, 3397. doi: 10.1021/cm060679r
-
[24]
(24) Serge, V.; Navrotsky, U. A. Appl. Phys. Lett. 2005, 87, 164103.doi: 10.1063/1.2108113
-
[25]
(25) Fang, Z. F.; Outlaw, M. D.; Smith, K. K.; Gist, N.; Li, S. G.;Dixon, D. A. J. Phys. Chem. C 2012, 116, 8475.
-
[26]
(26) Jung, C.; Koyama, M.; Kubo, M.; Imamura, A.; Miyamoto, A.Appl. Surf. Sci. 2005, 244, 644. doi: 10.1016/j.apsusc.2004.10.141
-
[27]
(27) Yang, Y. L.; Lu, C. H.; Huang, J.; Li, Y.; Chen,W. K. Chin. J.Catal. 2009, 30, 328. [杨亚丽, 陆春海, 黄娟, 李奕, 陈文凯. 催化学报, 2009, 30, 328.]
-
[28]
(28) Chen, G. H.; Hou, Z. F.; ng, X. G. Comput. Mater. Sci. 2008,44, 46. doi: 10.1016/j.commatsci.2008.01.051
-
[29]
(29) Caravaca, M. A.; Casali, R. A. J. Phys., Condens. Matter. 2005,17, 5795. doi: 10.1088/0953-8984/17/37/015
-
[30]
(30) Rignanese, G. M.; nze, X.; Jun, G..; Cho, K.; Pasquarello, A.Phys. Rev. B 2004, 69, 4301.
-
[31]
(31) Demkov, A. A. Phys. Status Solidi B 2001, 26, 57.
-
[32]
(32) Wang, J.; Li, H.; Stevens, R. J. Mater. Sci. 1992, 27, 5397. doi: 10.1007/BF00541601
-
[33]
(33) Delly, B. J. Chem. Phys. 1990, 92, 508. doi: 10.1063/1.458452
-
[34]
(34) Delly, B. J. Chem. Phys.2000, 113, 7756. doi: 10.1063/1.1316015
-
[35]
(35) Perdew, J. P.;Wang, Y. Phys. Rev. B 1992, 45, 13244. doi: 10.1103/PhysRevB.45.13244
-
[36]
(36) Du, Y. D.; Zhao,W. N.; Guo, X.; Zhang, Y. F.; Chen,W. K. ActaPhys. -Chim. Sin. 2011, 27, 1075. [杜玉栋, 赵伟娜, 郭欣,章永凡, 陈文凯. 物理化学学报, 2011, 27, 1075.] doi: 10.3866/PKU.WHXB20110444
-
[37]
(37) Sun, B. Z.; Chen,W. K.; Xu, Y. J. J. Phys. Chem. C 2010, 114,6543. doi: 10.1021/jp912075t
-
[38]
(38) Sun, B. Z.; Chen,W. K.; Xu, Y. J. J. Phys. Chem. C 2011, 115,5800. doi: 10.1021/jp111045t
-
[39]
(39) Verlusi, L.; Zeigler, T. Chem. Phys. 1988, 88, 322.
-
[40]
(40) Ortmann, F.; Bechstedt, F.; Schmidt,W. G. Phys. Rev. B 2006,73, 5101.
-
[41]
(41) Halgren, T. A.; Lipscomb,W. N. Chem. Phys. Lett. 1977, 49,225. doi: 10.1016/0009-2614(77)80574-5
-
[42]
(42) Ma, M.; Zhang, X.; Peng. L. L.;Wang, J. B. Tetrahedron Lett.2007, 48, 1095. doi: 10.1016/j.tetlet.2006.12.090
-
[43]
(43) Ziolek, M.; Kujawa, J.; Saur, O.; Lavalley, J. C. J. Mol. Catal.A: Chem. 1995, 97, 49. doi: 10.1016/1381-1169(94)00068-9
-
[44]
(44) Xu, H.; Zhang, R. Q.; Ng, A. M. C.; Djurisic, A. B.; Chan, H. T.;Chan,W. K.; Tong, S. Y. J. Phys. Chem. C 2011, 115, 19710.doi: 10.1021/jp2032884
-
[45]
(45) Bandura, A. V.; Kubicki, J. D.; Sofo, J. O. J. Phys. Chem. B2008, 112, 11616. doi: 10.1021/jp711763y
-
[46]
(46) Batzill, M.; Bergermayer,W.; Tanaka, I.; Diebold, U. Surf. Sci.Lett. 2006, 600, 29. doi: 10.1016/j.susc.2005.11.034
-
[47]
(47) Bustamanta, M.; Valencia, I.; Castro, M. J. Phys. Chem. A 2011,115, 4115. doi: 10.1021/jp108503e
-
[48]
(48) Paul, J.; Hoffmann, F. M. J. Phys. Chem. 1986, 90, 5321. doi: 10.1021/j100412a083
-
[1]
-
-
-
[1]
Zeyu XU , Anlei DANG , Bihua DENG , Xiaoxin ZUO , Yu LU , Ping YANG , Wenzhu YIN . Evaluation of the efficacy of graphene oxide quantum dots as an ovalbumin delivery platform and adjuvant for immune enhancement. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1065-1078. doi: 10.11862/CJIC.20240099
-
[2]
Jie ZHAO , Sen LIU , Qikang YIN , Xiaoqing LU , Zhaojie WANG . Theoretical calculation of selective adsorption and separation of CO2 by alkali metal modified naphthalene/naphthalenediyne. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 515-522. doi: 10.11862/CJIC.20230385
-
[3]
Jingke LIU , Jia CHEN , Yingchao HAN . Nano hydroxyapatite stable suspension system: Preparation and cobalt adsorption performance. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1763-1774. doi: 10.11862/CJIC.20240060
-
[4]
Jie ZHAO , Huili ZHANG , Xiaoqing LU , Zhaojie WANG . Theoretical calculations of CO2 capture and separation by functional groups modified 2D covalent organic framework. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 275-283. doi: 10.11862/CJIC.20240213
-
[5]
Hao XU , Ruopeng LI , Peixia YANG , Anmin LIU , Jie BAI . Regulation mechanism of halogen axial coordination atoms on the oxygen reduction activity of Fe-N4 site: A density functional theory study. Chinese Journal of Inorganic Chemistry, 2025, 41(4): 695-701. doi: 10.11862/CJIC.20240302
-
[6]
Peng XU , Shasha WANG , Nannan CHEN , Ao WANG , Dongmei YU . Preparation of three-layer magnetic composite Fe3O4@polyacrylic acid@ZiF-8 for efficient removal of malachite green in water. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 544-554. doi: 10.11862/CJIC.20230239
-
[7]
Jing Wang , Pingping Li , Yuehui Wang , Yifan Xiu , Bingqian Zhang , Shuwen Wang , Hongtao Gao . Treatment and Discharge Evaluation of Phosphorus-Containing Wastewater. University Chemistry, 2024, 39(5): 52-62. doi: 10.3866/PKU.DXHX202309097
-
[8]
Guang Huang , Lei Li , Dingyi Zhang , Xingze Wang , Yugai Huang , Wenhui Liang , Zhifen Guo , Wenmei Jiao . Cobalt’s Valor, Nickel’s Foe: A Comprehensive Chemical Experiment Utilizing a Cobalt-based Imidazolate Framework for Nickel Ion Removal. University Chemistry, 2024, 39(8): 174-183. doi: 10.3866/PKU.DXHX202311051
-
[9]
Fugui XI , Du LI , Zhourui YAN , Hui WANG , Junyu XIANG , Zhiyun DONG . Functionalized zirconium metal-organic frameworks for the removal of tetracycline from water. Chinese Journal of Inorganic Chemistry, 2025, 41(4): 683-694. doi: 10.11862/CJIC.20240291
-
[10]
Meifeng Zhu , Jin Cheng , Kai Huang , Cheng Lian , Shouhong Xu , Honglai Liu . Classical Density Functional Theory for Understanding Electrochemical Interface. University Chemistry, 2025, 40(3): 148-152. doi: 10.12461/PKU.DXHX202405166
-
[11]
Kaifu Zhang , Shan Gao , Bin Yang . Application of Theoretical Calculation with Fun Practice in Raman Spectroscopy Experimental Teaching. University Chemistry, 2025, 40(3): 62-67. doi: 10.12461/PKU.DXHX202404045
-
[12]
Supin Zhao , Jing Xie . Understanding the Vibrational Stark Effect of Water Molecules Using Quantum Chemistry Calculations. University Chemistry, 2025, 40(3): 178-185. doi: 10.12461/PKU.DXHX202406024
-
[13]
Jia Zhou . Constructing Potential Energy Surface of Water Molecule by Quantum Chemistry and Machine Learning: Introduction to a Comprehensive Computational Chemistry Experiment. University Chemistry, 2024, 39(3): 351-358. doi: 10.3866/PKU.DXHX202309060
-
[14]
Xiaoning TANG , Shu XIA , Jie LEI , Xingfu YANG , Qiuyang LUO , Junnan LIU , An XUE . Fluorine-doped MnO2 with oxygen vacancy for stabilizing Zn-ion batteries. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1671-1678. doi: 10.11862/CJIC.20240149
-
[15]
Zhiquan Zhang , Baker Rhimi , Zheyang Liu , Min Zhou , Guowei Deng , Wei Wei , Liang Mao , Huaming Li , Zhifeng Jiang . Insights into the Development of Copper-based Photocatalysts for CO2 Conversion. Acta Physico-Chimica Sinica, 2024, 40(12): 2406029-. doi: 10.3866/PKU.WHXB202406029
-
[16]
Jiali CHEN , Guoxiang ZHAO , Yayu YAN , Wanting XIA , Qiaohong LI , Jian ZHANG . Machine learning exploring the adsorption of electronic gases on zeolite molecular sieves. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 155-164. doi: 10.11862/CJIC.20240408
-
[17]
Shuanglin TIAN , Tinghong GAO , Yutao LIU , Qian CHEN , Quan XIE , Qingquan XIAO , Yongchao LIANG . First-principles study of adsorption of Cl2 and CO gas molecules by transition metal-doped g-GaN. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1189-1200. doi: 10.11862/CJIC.20230482
-
[18]
Maitri Bhattacharjee , Rekha Boruah Smriti , R. N. Dutta Purkayastha , Waldemar Maniukiewicz , Shubhamoy Chowdhury , Debasish Maiti , Tamanna Akhtar . Synthesis, structural characterization, bio-activity, and density functional theory calculation on Cu(Ⅱ) complexes with hydrazone-based Schiff base ligands. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1409-1422. doi: 10.11862/CJIC.20240007
-
[19]
Xiaochen Zhang , Fei Yu , Jie Ma . 多角度数理模拟在电容去离子中的前沿应用. Acta Physico-Chimica Sinica, 2024, 40(11): 2311026-. doi: 10.3866/PKU.WHXB202311026
-
[20]
Weina Wang , Lixia Feng , Fengyi Liu , Wenliang Wang . Computational Chemistry Experiments in Facilitating the Study of Organic Reaction Mechanism: A Case Study of Electrophilic Addition of HCl to Asymmetric Alkenes. University Chemistry, 2025, 40(3): 206-214. doi: 10.12461/PKU.DXHX202407022
-
[1]
Metrics
- PDF Downloads(729)
- Abstract views(1335)
- HTML views(21)