Citation: LI Lu, LI Yi, GUO Xin, ZHANG Yong-Fan, CHEN Wen-Kai. Adsorption and Dissociation of Water on HfO2(111) and (110) Surfaces[J]. Acta Physico-Chimica Sinica, ;2013, 29(05): 937-945. doi: 10.3866/PKU.WHXB201303081
-
First-principles calculations based on density functional theory (DFT) with the generalized gradient approximation (GGA-PW91) have been used to investigate the adsorption and dissociation of H2O molecules on HfO2(111) and (110) surfaces at different sites with different coverages. It was found that the surface hafnium atom was the active adsorption position of the (111) and (110) surfaces when compared different adsorption energies and various geometrical parameters. Adsorption energies of water on the HfO2 (111) and (110) surfaces varied slightly as the coverage increased. It was shown that the most favorable configuration of H2O on the HfO2(111) and (110) surfaces corresponded to the coordination of H2O via its oxygen to a surface hafnium atom. Adsorption geometries, Mulliken population charges, density of states, and frequency calculations for HfO2-OH, HfO2-O, and HfO2-H at both surfaces were also carried out. The results showed that the hydroxyl group interacted with the surface by its oxygen atom to surface hafnium atoms. Isolated oxygen atoms bound to surface hafnium and oxygen atoms, while hydrogen atoms interact only with surface oxygen atoms to form hydroxyl groups. For the dissociation reaction, according to transition searching, H2O→H (ads)+OH (ads). The energy barriers were endothermic by 9.7 and 17.3 kJ· mol-1 for the (111) surfaces and exothermic by -59.9 and -47.6 kJ·mol-1 for the (110) surfaces.
-
Keywords:
-
Ddensity functional theory
, - HfO2,
- H2O molecule,
- Adsorption,
- Dissociation
-
-
-
[1]
(1) Lee, S. J.; Jeon, T. S.; Kwong, D. L.; Clark, R. J. Appl. Phys.2002, 92, 2807. doi: 10.1063/1.1500420
-
[2]
(2) Wilk, G. D.;Wallace, R. M.; Anthony, J. M. J. Appl. Phys. 2001,89, 5243. doi: 10.1063/1.1361065
-
[3]
(3) Yeo, Y.; King, T.; Hu, C. J. Appl. Phys. 2002, 92, 7266. doi: 10.1063/1.1521517
-
[4]
(4) Aarik, J.; Mandar, H.; Kirm, M.; Pung, L. Thin Solid Films2004, 466, 41. doi: 10.1016/j.tsf.2004.01.110
-
[5]
(5) Terki, R.; Feraoun, H.; Bertrand, G.; Aourag, H. Comput. Mater.Sci. 2005, 33, 44. doi: 10.1016/j.commatsci.2004.12.059
-
[6]
(6) Cockayn, E. Phys. Rev. B 2007, 75, 094103. doi: 10.1103/PhysRevB.75.094103
-
[7]
(7) Mavrou, G.; Galata, S.; Tsipas, P.; Sotiropoulos, A.;Panayiotatos, Y.; Dimoulas, A.; Evangelou, E. K.; Seo, J.W.;Dieker, C. J. Appl. Phys. 2008, 103, 014506.
-
[8]
(8) Atashi, B. M.; Javier, F. S.; Charles, B. M. Phys. Rev. B 2006,73, 115330. doi: 10.1103/PhysRevB.73.115330
-
[9]
(9) Ryshkewitch, E.; Richerson, D.W. Oxide Ceramics, PhysicalChemistry and Technology; Academic: Floride, 1985.
-
[10]
(10) Waldorf, A. J.; Dobrowolski, J. A.; Sullivan, B. T.; Plante, L. M.Appl. Opt. 1993, 32, 5583. doi: 10.1364/AO.32.005583
-
[11]
(11) He, G.; Zhu, L. Q.; Liu, M.; Zhang, Q. Appl. Surf. Sci. 2007,253, 3413. doi: 10.1016/j.apsusc.2006.07.055
-
[12]
(12) Mukhopadhyay, A. B.; Musgrave, C. B.; Sanz, J. F. J. Am.Chem. Soc. 2008, 130, 11996. doi: 10.1021/ja801616u
-
[13]
(13) Biercuk, M. J.; Mason, N.; Marcus, C. M. Nano Lett. 2004, 4, 1.
-
[14]
(14) Widjaja, Y.; Musgrave, C. B. J. Chem. Phys. 2002, 117, 1931.doi: 10.1063/1.1495847
-
[15]
(15) Alam, M. A.; Green, M. L. J. Appl. Phys. 2003, 94, 3403. doi: 10.1063/1.1599978
-
[16]
(16) Fihol, J. S.; Neurock, M. Angew. Chem. Int. Edit. 2006, 45, 402.doi: 10.1002/(ISSN)1521-3773
-
[17]
(17) khale, A. A.; Dumesic, J. A.; Mavrikakis, M. J. Am. Chem.Soc. 2008, 130, 1402. doi: 10.1021/ja0768237
-
[18]
(18) Phatak, A. A.; Delgass,W. N.; Riberiro, F. H.; Scheider,W. F.J. Phys. Chem. C 2009, 113, 7269. doi: 10.1021/jp810216b
-
[19]
(19) Zhang, J. L.;Wang, C.; Fu, Y.; Che, Y. C.; Zhou, C.W. ACSNano 2011, 5, 3284. doi: 10.1021/nn2004298
-
[20]
(20) Javey, A.; Guo, J.; Farmer, D. B.;Wang, Q. Nano Lett. 2004, 4,447. doi: 10.1021/nl035185x
-
[21]
(21) Wang, T.; Ekerdt, J. G. Chem. Mater. 2009, 21, 3096. doi: 10.1021/cm9001064
-
[22]
(22) Iskandarova, I. M.; Knizhnik, A. A.; Rykova, E. A.;Bagaturyants, A. A.; Potapkin, B. V.; Korkin, A. A.Microelectron. Eng. 2003, 69, 587. doi: 10.1016/S0167-9317(03)00350-2
-
[23]
(23) Atashi, B.; Mukhopadhyay, J. F. S.; Musgrave, C. B. Chem.Mater. 2006, 18, 3397. doi: 10.1021/cm060679r
-
[24]
(24) Serge, V.; Navrotsky, U. A. Appl. Phys. Lett. 2005, 87, 164103.doi: 10.1063/1.2108113
-
[25]
(25) Fang, Z. F.; Outlaw, M. D.; Smith, K. K.; Gist, N.; Li, S. G.;Dixon, D. A. J. Phys. Chem. C 2012, 116, 8475.
-
[26]
(26) Jung, C.; Koyama, M.; Kubo, M.; Imamura, A.; Miyamoto, A.Appl. Surf. Sci. 2005, 244, 644. doi: 10.1016/j.apsusc.2004.10.141
-
[27]
(27) Yang, Y. L.; Lu, C. H.; Huang, J.; Li, Y.; Chen,W. K. Chin. J.Catal. 2009, 30, 328. [杨亚丽, 陆春海, 黄娟, 李奕, 陈文凯. 催化学报, 2009, 30, 328.]
-
[28]
(28) Chen, G. H.; Hou, Z. F.; ng, X. G. Comput. Mater. Sci. 2008,44, 46. doi: 10.1016/j.commatsci.2008.01.051
-
[29]
(29) Caravaca, M. A.; Casali, R. A. J. Phys., Condens. Matter. 2005,17, 5795. doi: 10.1088/0953-8984/17/37/015
-
[30]
(30) Rignanese, G. M.; nze, X.; Jun, G..; Cho, K.; Pasquarello, A.Phys. Rev. B 2004, 69, 4301.
-
[31]
(31) Demkov, A. A. Phys. Status Solidi B 2001, 26, 57.
-
[32]
(32) Wang, J.; Li, H.; Stevens, R. J. Mater. Sci. 1992, 27, 5397. doi: 10.1007/BF00541601
-
[33]
(33) Delly, B. J. Chem. Phys. 1990, 92, 508. doi: 10.1063/1.458452
-
[34]
(34) Delly, B. J. Chem. Phys.2000, 113, 7756. doi: 10.1063/1.1316015
-
[35]
(35) Perdew, J. P.;Wang, Y. Phys. Rev. B 1992, 45, 13244. doi: 10.1103/PhysRevB.45.13244
-
[36]
(36) Du, Y. D.; Zhao,W. N.; Guo, X.; Zhang, Y. F.; Chen,W. K. ActaPhys. -Chim. Sin. 2011, 27, 1075. [杜玉栋, 赵伟娜, 郭欣,章永凡, 陈文凯. 物理化学学报, 2011, 27, 1075.] doi: 10.3866/PKU.WHXB20110444
-
[37]
(37) Sun, B. Z.; Chen,W. K.; Xu, Y. J. J. Phys. Chem. C 2010, 114,6543. doi: 10.1021/jp912075t
-
[38]
(38) Sun, B. Z.; Chen,W. K.; Xu, Y. J. J. Phys. Chem. C 2011, 115,5800. doi: 10.1021/jp111045t
-
[39]
(39) Verlusi, L.; Zeigler, T. Chem. Phys. 1988, 88, 322.
-
[40]
(40) Ortmann, F.; Bechstedt, F.; Schmidt,W. G. Phys. Rev. B 2006,73, 5101.
-
[41]
(41) Halgren, T. A.; Lipscomb,W. N. Chem. Phys. Lett. 1977, 49,225. doi: 10.1016/0009-2614(77)80574-5
-
[42]
(42) Ma, M.; Zhang, X.; Peng. L. L.;Wang, J. B. Tetrahedron Lett.2007, 48, 1095. doi: 10.1016/j.tetlet.2006.12.090
-
[43]
(43) Ziolek, M.; Kujawa, J.; Saur, O.; Lavalley, J. C. J. Mol. Catal.A: Chem. 1995, 97, 49. doi: 10.1016/1381-1169(94)00068-9
-
[44]
(44) Xu, H.; Zhang, R. Q.; Ng, A. M. C.; Djurisic, A. B.; Chan, H. T.;Chan,W. K.; Tong, S. Y. J. Phys. Chem. C 2011, 115, 19710.doi: 10.1021/jp2032884
-
[45]
(45) Bandura, A. V.; Kubicki, J. D.; Sofo, J. O. J. Phys. Chem. B2008, 112, 11616. doi: 10.1021/jp711763y
-
[46]
(46) Batzill, M.; Bergermayer,W.; Tanaka, I.; Diebold, U. Surf. Sci.Lett. 2006, 600, 29. doi: 10.1016/j.susc.2005.11.034
-
[47]
(47) Bustamanta, M.; Valencia, I.; Castro, M. J. Phys. Chem. A 2011,115, 4115. doi: 10.1021/jp108503e
-
[48]
(48) Paul, J.; Hoffmann, F. M. J. Phys. Chem. 1986, 90, 5321. doi: 10.1021/j100412a083
-
[1]
-
-
[1]
Jie ZHAO , Sen LIU , Qikang YIN , Xiaoqing LU , Zhaojie WANG . Theoretical calculation of selective adsorption and separation of CO2 by alkali metal modified naphthalene/naphthalenediyne. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 515-522. doi: 10.11862/CJIC.20230385
-
[2]
Zeyu XU , Anlei DANG , Bihua DENG , Xiaoxin ZUO , Yu LU , Ping YANG , Wenzhu YIN . Evaluation of the efficacy of graphene oxide quantum dots as an ovalbumin delivery platform and adjuvant for immune enhancement. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1065-1078. doi: 10.11862/CJIC.20240099
-
[3]
Jingke LIU , Jia CHEN , Yingchao HAN . Nano hydroxyapatite stable suspension system: Preparation and cobalt adsorption performance. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1763-1774. doi: 10.11862/CJIC.20240060
-
[4]
Peng XU , Shasha WANG , Nannan CHEN , Ao WANG , Dongmei YU . Preparation of three-layer magnetic composite Fe3O4@polyacrylic acid@ZiF-8 for efficient removal of malachite green in water. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 544-554. doi: 10.11862/CJIC.20230239
-
[5]
Jing Wang , Pingping Li , Yuehui Wang , Yifan Xiu , Bingqian Zhang , Shuwen Wang , Hongtao Gao . Treatment and Discharge Evaluation of Phosphorus-Containing Wastewater. University Chemistry, 2024, 39(5): 52-62. doi: 10.3866/PKU.DXHX202309097
-
[6]
Guang Huang , Lei Li , Dingyi Zhang , Xingze Wang , Yugai Huang , Wenhui Liang , Zhifen Guo , Wenmei Jiao . Cobalt’s Valor, Nickel’s Foe: A Comprehensive Chemical Experiment Utilizing a Cobalt-based Imidazolate Framework for Nickel Ion Removal. University Chemistry, 2024, 39(8): 174-183. doi: 10.3866/PKU.DXHX202311051
-
[7]
Xiaoning TANG , Shu XIA , Jie LEI , Xingfu YANG , Qiuyang LUO , Junnan LIU , An XUE . Fluorine-doped MnO2 with oxygen vacancy for stabilizing Zn-ion batteries. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1671-1678. doi: 10.11862/CJIC.20240149
-
[8]
Zhiquan Zhang , Baker Rhimi , Zheyang Liu , Min Zhou , Guowei Deng , Wei Wei , Liang Mao , Huaming Li , Zhifeng Jiang . Insights into the Development of Copper-based Photocatalysts for CO2 Conversion. Acta Physico-Chimica Sinica, 2024, 40(12): 2406029-. doi: 10.3866/PKU.WHXB202406029
-
[9]
Jia Zhou . Constructing Potential Energy Surface of Water Molecule by Quantum Chemistry and Machine Learning: Introduction to a Comprehensive Computational Chemistry Experiment. University Chemistry, 2024, 39(3): 351-358. doi: 10.3866/PKU.DXHX202309060
-
[10]
Maitri Bhattacharjee , Rekha Boruah Smriti , R. N. Dutta Purkayastha , Waldemar Maniukiewicz , Shubhamoy Chowdhury , Debasish Maiti , Tamanna Akhtar . Synthesis, structural characterization, bio-activity, and density functional theory calculation on Cu(Ⅱ) complexes with hydrazone-based Schiff base ligands. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1409-1422. doi: 10.11862/CJIC.20240007
-
[11]
Xiaochen Zhang , Fei Yu , Jie Ma . 多角度数理模拟在电容去离子中的前沿应用. Acta Physico-Chimica Sinica, 2024, 40(11): 2311026-. doi: 10.3866/PKU.WHXB202311026
-
[12]
Caixia Lin , Zhaojiang Shi , Yi Yu , Jianfeng Yan , Keyin Ye , Yaofeng Yuan . Ideological and Political Design for the Electrochemical Synthesis of Benzoxathiazine Dioxide Experiment. University Chemistry, 2024, 39(2): 61-66. doi: 10.3866/PKU.DXHX202309005
-
[13]
Shuanglin TIAN , Tinghong GAO , Yutao LIU , Qian CHEN , Quan XIE , Qingquan XIAO , Yongchao LIANG . First-principles study of adsorption of Cl2 and CO gas molecules by transition metal-doped g-GaN. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1189-1200. doi: 10.11862/CJIC.20230482
-
[14]
Ping ZHANG , Chenchen ZHAO , Xiaoyun CUI , Bing XIE , Yihan LIU , Haiyu LIN , Jiale ZHANG , Yu'nan CHEN . Preparation and adsorption-photocatalytic performance of ZnAl@layered double oxides. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1965-1974. doi: 10.11862/CJIC.20240014
-
[15]
Fei Xie , Chengcheng Yuan , Haiyan Tan , Alireza Z. Moshfegh , Bicheng Zhu , Jiaguo Yu . d带中心调控过渡金属单原子负载COF吸附O2的理论计算研究. Acta Physico-Chimica Sinica, 2024, 40(11): 2407013-. doi: 10.3866/PKU.WHXB202407013
-
[16]
Xiaowu Zhang , Pai Liu , Qishen Huang , Shufeng Pang , Zhiming Gao , Yunhong Zhang . Acid-Base Dissociation Equilibrium in Multiphase System: Effect of Gas. University Chemistry, 2024, 39(4): 387-394. doi: 10.3866/PKU.DXHX202310021
-
[17]
Jia Yao , Xiaogang Peng . Theory of Macroscopic Molecular Systems: Theoretical Framework of the Physical Chemistry Course in the Chemistry “101 Plan”. University Chemistry, 2024, 39(10): 27-37. doi: 10.12461/PKU.DXHX202408117
-
[18]
Bo YANG , Gongxuan LÜ , Jiantai MA . Nickel phosphide modified phosphorus doped gallium oxide for visible light photocatalytic water splitting to hydrogen. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 736-750. doi: 10.11862/CJIC.20230346
-
[19]
Xiaosong PU , Hangkai WU , Taohong LI , Huijuan LI , Shouqing LIU , Yuanbo HUANG , Xuemei LI . Adsorption performance and removal mechanism of Cd(Ⅱ) in water by magnesium modified carbon foam. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1537-1548. doi: 10.11862/CJIC.20240030
-
[20]
Fang Niu , Rong Li , Qiaolan Zhang . Analysis of Gas-Solid Adsorption Behavior in Resistive Gas Sensing Process. University Chemistry, 2024, 39(8): 142-148. doi: 10.3866/PKU.DXHX202311102
-
[1]
Metrics
- PDF Downloads(729)
- Abstract views(1277)
- HTML views(15)