Citation: YAO Fang-Fang, WU Bao-Shan, ZHOU Li-Ping, GAO Jun-Hu, LI Ying, LI Yong-Wang. Effect of Alcohol Addition on Fischer-Tropsch Synthesis over Cobalt-Based Catalysts[J]. Acta Physico-Chimica Sinica, ;2013, 29(05): 1063-1072. doi: 10.3866/PKU.WHXB201303072 shu

Effect of Alcohol Addition on Fischer-Tropsch Synthesis over Cobalt-Based Catalysts

  • Received Date: 21 January 2013
    Available Online: 7 March 2013

    Fund Project: 国家重点基础研究发展计划(973) (2011CB201401) (973) (2011CB201401)中国科学院知识创新工程项目(KJCX2-YW-N41)资助 (KJCX2-YW-N41)

  • CnH2n+1OH (n=2, 3, 5, 6) primary alcohol activation, hydrogenation and its additional effects on the performance of the Fischer-Tropsch (FT) synthesis over a cobalt catalyst were investigated in a fixed bed micro-reactor. All products were analyzed using an on-line gas chromatography. The diffuse reflectance infrared Fourier transform spectroscopy (DRIFTS) was used to investigate intermediates on the catalyst surface. In the presence of ar n or hydrogen, CnH2n+1OH underwent two main reactions: direct de-carbonylation to produce (CH2)n-1 hydrocarbons, and dehydration to produce (CH2)n hydrocarbons. The addition of lower carbon number alcohol (ethanol or 1-propanol) into the FT synthesis reaction had no significant effect on the hydrocarbon product distribution. While co-feeding higher carbon number alcohol (1-pentanol or 1-hexanol) into the FT synthesis reaction, the selectivity to hydrocarbons with carbon numbers greater than or equal to n-1 increased markedly because of the additive?s chain initiation on the catalyst surface.

  • 加载中
    1. [1]

      (1) Hao, X.; Dong, G.; Yang, Y.; Xu, Y.; Li, Y. Chem. Eng. Technol.2007, 30 (9), 1157.

    2. [2]

      (2) Xiang, H.W.; Tang, H. Q.; Li, Y.W. J. Fuel. Chem. Technol.2001, 29, 289. [相宏伟, 唐宏青, 李永旺. 燃料化学学报,2001, 29, 289.]

    3. [3]

      (3) Van Der Laan, G. P.; Beenackers, A. A. C. M. Cat. Rev. 1999, 41 (3-4), 255. doi: 10.1081/CR-100101170

    4. [4]

      (4) Rofer-DePoorter, C. K. Chem. Rev. 1981, 81 (5), 447. doi: 10.1021/cr00045a002

    5. [5]

      (5) van Dijk, H. A. J. The Fischer-Tropsch Synthesis: A MechanisticStudy Using Transient Isotopic Tracing; Eindhoven: TechnischeUniversiteit Eindhoven, 2001.

    6. [6]

      (6) Gao, H. Y.; Chen, J. G.; Xiang, H.W.; Yang, J. L.; Li, Y.W.;Sun, Y. H. Chin. J. Catal. 2001, 22, 133. [高海燕, 陈建刚, 相宏伟, 杨继礼, 李永旺, 孙予罕. 催化学报, 2001, 22, 133.]

    7. [7]

      (7) Sage, V.; Burke, N. Catal. Today 2011, 178 (1), 137. doi: 10.1016/j.cattod.2011.09.013

    8. [8]

      (8) Turner, M. L.; Marsih, N.; Mann, B. E.; Quyoum, R.; Long, H.C.; Maitlis, P. M. J. Am. Chem. Soc. 2002, 124 (35), 10456. doi: 10.1021/ja026280v

    9. [9]

      (9) Hou, L. Fischer-Tropsch Studies with Acetylenic Compounds asProbes. Ph. D. Dissertation, University of Pittsburgh, Pittsburgh,2005.

    10. [10]

      (10) Kummer, J. T.; Emmett, P. H. J. Am. Chem. Soc. 1953, 75 (21),5177. doi: 10.1021/ja01117a008

    11. [11]

      (11) Hall,W. K.; Kokes, R. J.; Emmett, P. H. J. Am. Chem. Soc.1957, 79 (12), 2983. doi: 10.1021/ja01569a001

    12. [12]

      (12) Hall,W. K.; Kokes, R. J.; Emmett, P. H. J. Am. Chem. Soc.1960, 82 (5), 1027. doi: 10.1021/ja01490a005

    13. [13]

      (13) Blyholder, G.; Emmett, P. H. J. Phys. Chem. 1959, 63 (6), 962.doi: 10.1021/j150576a044

    14. [14]

      (14) Blyholder, G.; Emmett, P. H. J. Phys. Chem. 1960, 64 (4), 470.doi: 10.1021/j100833a023

    15. [15]

      (15) Tau, L. M.; Dabbagh, H. A.; Halasz, J.; Davis, B. H. J. Mol.Catal. 1992, 71 (1), 37. doi: 10.1016/0304-5102(92)80006-3

    16. [16]

      (16) Tau, L. M.; Dabbagh, H. A.; Davis, B. H. Energy Fuels 1991, 5 (1), 174. doi: 10.1021/ef00025a030

    17. [17]

      (17) Sarkar, A.; Keogh, R.; Bao, S.; Davis, B. Catal. Lett. 2008, 120 (1-2), 25. doi: 10.1007/s10562-007-9261-z

    18. [18]

      (18) Sarkar, A.; Keogh, R. A.; Bao, S.; Davis, B. H. Appl. Catal. A:Gen. 2008, 341 (1-2), 146.

    19. [19]

      (19) Fan, G. X. Analysis of Fischer-Tropsch Synthesis Cold TrapOils. MS Dissertation, Institute of Coal Chemistry, ChineseAcademy of Science, Shanxi, 2007. [樊改仙. F-T 合成油相产物的分析研究[D]. 山西: 中国科学院山西煤炭化学研究所,2007.]

    20. [20]

      (20) Gao, J.;Wu, B.; Zhou, L.; Yang, Y.; Hao, X.; Xu, J.; Xu, Y.; Li,Y. Ind. Eng. Chem. Res. 2012, 51 (36), 11618. doi: 10.1021/ie201671g

    21. [21]

      (21) Dictor, R. A.; Bell, A. T. Ind. Eng. Chem. Fundam. 1984, 23 (2),252. doi: 10.1021/i100014a019

    22. [22]

      (22) Snavely, K.; Subramaniam, B. Ind. Eng. Chem. Res. 1997, 36 (10), 4413. doi: 10.1021/ie9702791

    23. [23]

      (23) Zhou, L. P. Kinetic Study of the Fischer-Tropsch Synthesis overan Industrial Iron-based Catalyst. Ph. D. Dissertation, Instituteof Coal Chemistry, Chinese Academy of Science, Taiyuan,2011. [周利平. 工业铁基催化剂F-T 合成动力学研究[D]. 太原: 中国科学院山西煤炭化学研究所, 2011.]

    24. [24]

      (24) Zhang, Q. H.; Kang, J. C.;Wang, Y. ChemCatChem 2010, 2,1030.

    25. [25]

      (25) Khodakov, A. Y.; Chu,W.; Fongarland, P. Chem. Rev. 2007, 107 (5), 1692. doi: 10.1021/cr050972v

    26. [26]

      (26) Xin, Q. In situ Techniques in Catalysis Research, 1st ed.; PekingUniversity Press: Beijing, 1993. [辛勤. 催化研究中的原位技术. 第一版. 北京: 北京大学出版社, 1993.]

    27. [27]

      (27) Weng, S. F. Fourier Transform Infrared Spectroscopy Analysis,2nd ed.; Chemical Industry Press: Beijing, 2010. [翁诗甫. 傅里叶变换红外光谱分析. 第二版. 北京: 化学工业出版社,2010.]

    28. [28]

      (28) Yee, A.; Morrison, S. J.; Idriss, H. J. Catal. 2000, 191 (1), 30.doi: 10.1006/jcat.1999.2765

    29. [29]

      (29) Zhang, J. L.; Ren, J.; Chen, J. G.; Sun, Y. H. Acta Phys. -Chim.Sin. 2002, 18, 260. [张俊岭, 任杰, 陈建刚, 孙予罕. 物理化学学报, 2002, 18, 260.] doi: 10.3866/PKU.WHXB20020314

    30. [30]

      (30) Szegedi, Á.; Popova, M.; Mavrodinova, V.; Minchev, C. Appl.Catal. A: General 2008, 338 (1-2), 44.

    31. [31]

      (31) Prieto, G.; Martínez, A.; Concepción, P.; Moreno-Tost, R.J. Catal. 2009, 266 (1), 129. doi: 10.1016/j.jcat.2009.06.001

    32. [32]

      (32) Jalama, K.; Coville, N. J.; Hildebrandt, D.; Glasser, D.; Jewell,L. L. Fuel 2007, 86 (1-2), 73.

    33. [33]

      (33) Zhou,W. Deactivation Studies of Co-Based Catalysts forFischer-Tropsch Synthesis in Fixed-Bed Reactor. Ph. D.Dissertation, Institute of Coal Chemistry, Chinese Academy ofScience, Taiyuan, 2005. [周玮. 钴基催化剂在固定床Fischer-Tropsch 合成反应中的失活行为研究[D]. 太原: 中国科学院山西煤炭化学研究所, 2005.]

    34. [34]

      (34) Mavrikakis, M.; Barteau, M. A. J. Mol. Catal. A: Chem. 1998,131 (1-3), 135.

    35. [35]

      (35) Cheng, J.; Hu, P.; Ellis, P.; French, S.; Kelly, G.; Lok, C. M.J. Phys. Chem. C 2008, 112 (25), 9464. doi: 10.1021/jp802242t

    36. [36]

      (36) Chen, L.; Zhu, Y.; Zheng, H.; Zhang, C.; Zhang, B.; Li, Y.J. Mol. Catal. A: Chem. 2011, 351, 217. doi: 10.1016/j.molcata.2011.10.015

    37. [37]

      (37) Chen, L.; Zhu, Y.; Zheng, H.; Zhang, C.; Li, Y. Appl. Catal. A:General 2012, 411-412, 95.

    38. [38]

      (38) Liu, X.; Li, X.; Fujimoto, K. Catal. Commun. 2007, 8 (9), 1329.doi: 10.1016/j.catcom.2006.12.002


  • 加载中
    1. [1]

      Ronghao Zhao Yifan Liang Mengyao Shi Rongxiu Zhu Dongju Zhang . Investigation into the Mechanism and Migratory Aptitude of Typical Pinacol Rearrangement Reactions: A Research-Oriented Computational Chemistry Experiment. University Chemistry, 2024, 39(4): 305-313. doi: 10.3866/PKU.DXHX202309101

    2. [2]

      Ling Fan Meili Pang Yeyun Zhang Yanmei Wang Zhenfeng Shang . Quantum Chemistry Calculation Research on the Diels-Alder Reaction of Anthracene and Maleic Anhydride: Introduction to a Computational Chemistry Experiment. University Chemistry, 2024, 39(4): 133-139. doi: 10.3866/PKU.DXHX202309024

    3. [3]

      Tianlong Zhang Rongling Zhang Hongsheng Tang Yan Li Hua Li . Online Monitoring and Mechanistic Analysis of 3,5-diamino-1,2,4-triazole (DAT) Synthesis via Raman Spectroscopy: A Recommendation for a Comprehensive Instrumental Analysis Experiment. University Chemistry, 2024, 39(6): 303-311. doi: 10.3866/PKU.DXHX202312006

    4. [4]

      Wentao Lin Wenfeng Wang Yaofeng Yuan Chunfa Xu . Concerted Nucleophilic Aromatic Substitution Reactions. University Chemistry, 2024, 39(6): 226-230. doi: 10.3866/PKU.DXHX202310095

    5. [5]

      Jiapei Zou Junyang Zhang Xuming Wu Cong Wei Simin Fang Yuxi Wang . A Comprehensive Experiment Based on Electrocatalytic Nitrate Reduction into Ammonia: Synthesis, Characterization, Performance Exploration, and Applicable Design of Copper-based Catalysts. University Chemistry, 2024, 39(6): 373-382. doi: 10.3866/PKU.DXHX202312081

    6. [6]

      Qian Huang Zhaowei Li Jianing Zhao Ao Yu . Quantum Chemical Calculations Reveal the Details Below the Experimental Phenomenon. University Chemistry, 2024, 39(3): 395-400. doi: 10.3866/PKU.DXHX202309018

    7. [7]

      Dan Li Hui Xin Xiaofeng Yi . Comprehensive Experimental Design on Ni-based Catalyst for Biofuel Production. University Chemistry, 2024, 39(8): 204-211. doi: 10.3866/PKU.DXHX202312046

    8. [8]

      Yingchun ZHANGYiwei SHIRuijie YANGXin WANGZhiguo SONGMin WANG . Dual ligands manganese complexes based on benzene sulfonic acid and 2, 2′-bipyridine: Structure and catalytic properties and mechanism in Mannich reaction. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1501-1510. doi: 10.11862/CJIC.20240078

    9. [9]

      Heng Zhang . Determination of All Rate Constants in the Enzyme Catalyzed Reactions Based on Michaelis-Menten Mechanism. University Chemistry, 2024, 39(4): 395-400. doi: 10.3866/PKU.DXHX202310047

    10. [10]

      Wei Zhong Dan Zheng Yuanxin Ou Aiyun Meng Yaorong Su . K原子掺杂高度面间结晶的g-C3N4光催化剂及其高效H2O2光合成. Acta Physico-Chimica Sinica, 2024, 40(11): 2406005-. doi: 10.3866/PKU.WHXB202406005

    11. [11]

      Wen YANGDidi WANGZiyi HUANGYaping ZHOUYanyan FENG . La promoted hydrotalcite derived Ni-based catalysts: In situ preparation and CO2 methanation performance. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 561-570. doi: 10.11862/CJIC.20230276

    12. [12]

      Yanan Liu Yufei He Dianqing Li . Preparation of Highly Dispersed LDHs-based Catalysts and Testing of Nitro Compound Reduction Performance: A Comprehensive Chemical Experiment for Research Transformation. University Chemistry, 2024, 39(8): 306-313. doi: 10.3866/PKU.DXHX202401081

    13. [13]

      Xin Zhou Zhi Zhang Yun Yang Shuijin Yang . A Study on the Enhancement of Photocatalytic Performance in C/Bi/Bi2MoO6 Composites by Ferroelectric Polarization: A Recommended Comprehensive Chemical Experiment. University Chemistry, 2024, 39(4): 296-304. doi: 10.3866/PKU.DXHX202310008

    14. [14]

      Zhanggui DUANYi PEIShanshan ZHENGZhaoyang WANGYongguang WANGJunjie WANGYang HUChunxin LÜWei ZHONG . Preparation of UiO-66-NH2 supported copper catalyst and its catalytic activity on alcohol oxidation. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 496-506. doi: 10.11862/CJIC.20230317

    15. [15]

      Min WANGDehua XINYaning SHIWenyao ZHUYuanqun ZHANGWei ZHANG . Construction and full-spectrum catalytic performance of multilevel Ag/Bi/nitrogen vacancy g-C3N4/Ti3C2Tx Schottky junction. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1123-1134. doi: 10.11862/CJIC.20230477

    16. [16]

      Wenlong LIXinyu JIAJie LINGMengdan MAAnning ZHOU . Photothermal catalytic CO2 hydrogenation over a Mg-doped In2O3-x catalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 919-929. doi: 10.11862/CJIC.20230421

    17. [17]

      Yong Wang Yingying Zhao Boshun Wan . Analysis of Organic Questions in the 37th Chinese Chemistry Olympiad (Preliminary). University Chemistry, 2024, 39(11): 406-416. doi: 10.12461/PKU.DXHX202403009

    18. [18]

      Kun WANGWenrui LIUPeng JIANGYuhang SONGLihua CHENZhao DENG . Hierarchical hollow structured BiOBr-Pt catalysts for photocatalytic CO2 reduction. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1270-1278. doi: 10.11862/CJIC.20240037

    19. [19]

      Shuang Yang Qun Wang Caiqin Miao Ziqi Geng Xinran Li Yang Li Xiaohong Wu . Ideological and Political Education Design for Research-Oriented Experimental Course of Highly Efficient Hydrogen Production from Water Electrolysis in Aerospace Perspective. University Chemistry, 2024, 39(11): 269-277. doi: 10.12461/PKU.DXHX202403044

    20. [20]

      Yuanyin Cui Jinfeng Zhang Hailiang Chu Lixian Sun Kai Dai . Rational Design of Bismuth Based Photocatalysts for Solar Energy Conversion. Acta Physico-Chimica Sinica, 2024, 40(12): 2405016-. doi: 10.3866/PKU.WHXB202405016

Metrics
  • PDF Downloads(553)
  • Abstract views(908)
  • HTML views(3)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return