Citation:
	            
		            LIU  Nian-Ping, SHEN  Jun, GUAN  Da-Yong, LIU  Dong, ZHOU  Xiao-Wei, LI  Ya-Jie. Effect of Carbon Aerogel Activation on Electrode Lithium Insertion Performance[J]. Acta Physico-Chimica Sinica,
							;2013, 29(05): 966-972.
						
							doi:
								10.3866/PKU.WHXB201302281
						
					
				
					
				
	        
- 
	                	
Carbon aerogels have received much recent attention as high-capacity insertion anodes for rechargeable lithium ion batteries. Carbon aerogels were synthesized from resorcinol-formaldehyde with a sodium carbonate catalyst via a sol-gel process, ambient drying, carbonization, and activation. Gaseous CO2-activated carbon aerogels combined the advantages of amorphous and nanoporous structures, with richer porous structures and more lithium insertion points than conventional carbon aerogels. Microporosity analysis indicated a high surface area, and the pore volume effectively retained lithium and its compounds. The mesoporosity allowed the mass transport of Li+ and conferred high ionic conductivity to the electrode. These improvements led to a higher lithium insertion capacity, and the activated carbon aerogel exhibited a specific surface area of 2032 m2·g-1. X-ray diffraction (XRD) and scanning electron microscopy (SEM) revealed an amorphous structure and nanoparticle network skeleton, respectively. Lithium insertion capacities of 3870 and 352 mAh·g-1 were exhibited in the 1st and 50th galvanostatic discharge-charge (50 mA·g-1) cycles, respectively. This corresponded to irreversible capacities of 658 and 333 mAh·g-1, respectively. This work demonstrates the feasibility of CO2 activation for improving lithium insertion performance in carbon aerogels, and provides preparation and optimization procedures for other porous electrode materials.
- 
								Keywords:
								
 - 
												
Carbon aerogel
, - Sol-gel,
 - Gas activation,
 - Amorphous carbon,
 - Lithium ion battery
 
 - 
												
 - 
	                	
	                 - 
	                	
- 
			
                    [1]
                
			
(1) Wild ose, G. G.; Leventis, H. C.; Simm, A. O.; Jones, J. H.;Compton, R. G. Chem. Commun. 2005, 3694.
 - 
			
                    [2]
                
			
(2) Tamai, H.; Sumi, T.; Yasuda, H. J. Colloid Interface Sci. 1996,177, 325.
 - 
			
                    [3]
                
			
(3) ng, Q.;Wang, H.; Liao, X. Z.; Ma,W.; He, Y. S.; Ma, Z. F.Acta Phys. -Chim. Sin. 2012, 28, 100. [龚强, 王红, 廖小珍, 麻微, 何雨石, 马紫峰. 物理化学学报, 2012, 28, 100.]doi: 10.3866/PKU.WHXB201228100
 - 
			
                    [4]
                
			
(4) Ikeda, S.; Ishino, S.; Harada, T.; Okamoto, N.; Sakata, T.; Mori,H.; Kuwabata, S.; Torimoto, T.; Matsumura, M. Angew. Chem.Int. Edit. 2006, 45, 7063.
 - 
			
                    [5]
                
			
(5) Pekala, R.W. J. Mater. Sci. 1989, 24, 3221. doi: 10.1007/BF01139044
 - 
			
                    [6]
                
			
(6) Kim, H. J.; Kim, J. H.; Kim,W. I.; Suh, D. J. Korean J. Chem.Eng. 2005, 22, 740. doi: 10.1007/BF02705792
 - 
			
                    [7]
                
			
(7) Mayer, S. T.; Pekala, R.W.; Kaschmitter, J. L. J. Electrochem.Soc. 1993, 140, 446. doi: 10.1149/1.2221066
 - 
			
                    [8]
                
			
(8) Lu, X.; Caps, R.; Fricke, J.; Alviso, C. T.; Pekala, R.W.J. Non-Cryst. Solids 1995, 188, 226. doi: 10.1016/0022-3093(95)00191-3
 - 
			
                    [9]
                
			
(9) Probstle, H.; Schmitt, C.; Frick, J. J. Power Sources 2002, 105,189. doi: 10.1016/S0378-7753(01)00938-7
 - 
			
                    [10]
                
			
(10) Ping, L. N.; Zheng, J. M.; Shi, Z. Q.;Wang, C. Y. ActaPhys. -Chim. Sin. 2012, 28, 1733. [平丽娜, 郑嘉明, 时志强,王成扬. 物理化学学报, 2012, 28, 1733.] doi: 10.3866/PKU.WHXB201205092
 - 
			
                    [11]
                
			
(11) Le, D. B.; Passerini, S.; Guo, J.; Ressler, J.; Owens, B. B.;Smyrl,W. H. J. Electrochem. Soc. 1996, 143, 2099. doi: 10.1149/1.1836965
 - 
			
                    [12]
                
			
(12) Xu, K.; Shen, L. F.; Mi, C. H.; Zhang, X. G. Acta Phys. -Chim.Sin. 2012, 28, 105. [徐科, 申来法, 米常焕, 张校刚. 物理化学学报, 2012, 28, 105.] doi: 10.3866/PKU.WHXB201228105
 - 
			
                    [13]
                
			
(13) Gao,W. C.; Huang, T.; Shen, Y. D.; Yu, A. S. Acta Phys. -Chim.Sin. 2011, 27, 2129. [高文超, 黄桃, 沈宇栋, 余爱水. 物理化学学报, 2011, 27, 2129.] doi: 10.3866/PKU.WHXB20110933
 - 
			
                    [14]
                
			
(14) Slides, C. R.; Li, N. C.; Patrissi, C. J.; Scrosati, B.; Martin, C. R.MRS Bulletin 2002, 8, 604.
 - 
			
                    [15]
                
			
(15) Zhang, D.W.; Zhao, Y. B.; odenough, J. B.; Lu, Y. H.; Chen,C. H.;Wang, L.; Liu, J.W. Electrochem. Commun. 2011, 13,125. doi: 10.1016/j.elecom.2010.11.031
 - 
			
                    [16]
                
			
(16) Tanaike, O.; Aoike, S.; Ohno, H.; Hatori, H.; Yamada, Y.Materials Science and Engineering B 2008, 148, 237. doi: 10.1016/j.mseb.2007.09.001
 - 
			
                    [17]
                
			
(17) Skowronski, J. M.; Knofczynski, K. J. Power Sources 2009,194, 81. doi: 10.1016/j.jpowsour.2009.04.048
 - 
			
                    [18]
                
			
(18) Kunowsky, M.; Marco-Lozar, J. P.; Oya, A.; Linares-Solano, A.Carbon 2012, 50, 407.
 - 
			
                    [19]
                
			
(19) Liu, H. Y.;Wang, K. P.; Teng, H. S. Carbon 2005, 43, 559. doi: 10.1016/j.carbon.2004.10.020
 - 
			
                    [20]
                
			
(20) Liu, N. P.; Shen, J.; Liu, D. Microporous Mesoporous Mat.2013, 167, 176. doi: 10.1016/j.micromeso.2012.09.009
 - 
			
                    [21]
                
			
(21) Pekala, R.W.; Farmer, J. C.; Alviso, C. T.; Tram, T. D.; Mayer,S. T.; Miller, J. M.; Dunn, B. J. Non-Cryst. Solids 1998, 225, 74.doi: 10.1016/S0022-3093(98)00011-8
 - 
			
                    [22]
                
			
(22) Xu, J. J.; Yang, J. Electrochem. Commun. 2003, 5, 230. doi: 10.1016/S1388-2481(03)00024-9
 - 
			
                    [23]
                
			
(23) Probstle, H.;Wiener, M.; Fricke, J. J. Porous Mater. 2003, 10,213. doi: 10.1023/B:JOPO.0000011381.74052.77
 - 
			
                    [24]
                
			
(24) Wu, D. C.; Fu, R.W.; Zhang, S. T.; Dresselhaus, M. S.;Dresselhaus, G. Carbon 2004, 42, 2033. doi: 10.1016/j.carbon.2004.04.003
 - 
			
                    [25]
                
			
(25) Wei, Y. Z.; Fang, B.; Iwasa, S.; Kumagai, M. J. Power Sources2005, 141, 386. doi: 10.1016/j.jpowsour.2004.10.001
 - 
			
                    [26]
                
			
(26) Antonio, B.; Pico, F.; Rojo, J. M. J. Power Sources 2004, 133,329. doi: 10.1016/j.jpowsour.2004.02.013
 - 
			
                    [27]
                
			
(27) Tarazona, P. Surf. Sci. 1995, 331, 989. doi: 10.1016/0039-6028(95)00170-0
 - 
			
                    [28]
                
			
(28) Sing, K. S.W.; Everett, D. H.; Haul, R. A.W.; Moscou, L.;Pierotti, R. A.; Rouquerol, J.; Siemieniewska, T. Pure Appl.Chem. 1985, 57, 603. doi: 10.1351/pac198557040603
 - 
			
                    [29]
                
			
(29) Bonino, F.; Brutti, S.; Piana, M.; Natale, S.; Scrosati, B.;Gherghel, L.; Mullen, K. Electrochim. Acta 2006, 51, 3407. doi: 10.1016/j.electacta.2005.09.036
 - 
			
                    [30]
                
			
(30) Giraudet, J.; Dubois, M.; Inacio, J.; Hamwi, A. Carbon 2003,41, 453. doi: 10.1016/S0008-6223(02)00341-X
 - 
			
                    [31]
                
			
(31) Besenhard, J. O.;Winter, M.; Yang, J.; Biberacher,W. J. PowerSources 1995, 54, 228. doi: 10.1016/0378-7753(94)02073-C
 - 
			
                    [32]
                
			
(32) Aurbach, D.; Eineli, Y. J. Electrochem. Soc. 1995, 142, 1746.doi: 10.1149/1.2044188
 - 
			
                    [33]
                
			
(33) Aurbach, D.; Markovsky, B.;Weissman, I.; Levi, E.; Ein-Eli, Y.Electrochim. Acta 1999, 45, 67. doi: 10.1016/S0013-4686(99)00194-2
 - 
			
                    [34]
                
			
(34) Zoo, G. F.; Zhang, D.W.; Dong, C.; Li, H.; Xiong, K.; Fei, L.F.; Qian, Y. T. Carbon 2006, 44, 2277.
 - 
			
                    [35]
                
			
(35) Wu, G. T.;Wang, C. S.; Zhang, X. B.; Yang, H. S.; Qi, Z. F.; He,P. M.; Li,W. Z. J. Electrochem. Soc. 1999, 5, 1696.
 - 
			
                    [36]
                
			
(36) Zhao, J.; Gao, Q. Y.; Gu, C.; Yang, Y. Chem. Phys. Lett. 2002,358, 77. doi: 10.1016/S0009-2614(02)00580-8
 - 
			
                    [37]
                
			
(37) Yang, Z. H.;Wu, H. Q. Solid State Ionics 2001, 143, 173. doi: 10.1016/S0167-2738(01)00852-9
 - 
			
                    [38]
                
			
(38) Flandrois, S.; Simon, B. Carbon 1999, 37, 165. doi: 10.1016/S0008-6223(98)00290-5
 - 
			
                    [39]
                
			
(39) Lee, H. Y.; Baek, J. K.; Jang, S.W. J. Power Sources 2001, 101,206. doi: 10.1016/S0378-7753(01)00671-1
 
 - 
			
                    [1]
                
			
 - 
	                	
						
						
						
						
	                 - 
	                	
- 
				[1]
				
Yan'e LIU , Shengli JIA , Yifan JIANG , Qinghua ZHAO , Yi LI , Xinshu CHANG . MoO3/cellulose derived carbon aerogel: Fabrication and performance as cathode for lithium-sulfur battery. Chinese Journal of Inorganic Chemistry, 2025, 41(8): 1565-1573. doi: 10.11862/CJIC.20250054
 - 
				[2]
				
Yifeng Xu , Jiquan Liu , Bin Cui , Yan Li , Gang Xie , Ying Yang . “Xiao Li’s School Adventures: The Working Principles and Safety Risks of Lithium-ion Batteries”. University Chemistry, 2024, 39(9): 259-265. doi: 10.12461/PKU.DXHX202404009
 - 
				[3]
				
Xintong Zhu , Bin Cao , Chong Yan , Cheng Tang , Aibing Chen , Qiang Zhang . Advances in coating strategies for graphite anodes in lithium-ion batteries. Acta Physico-Chimica Sinica, 2025, 41(9): 100096-0. doi: 10.1016/j.actphy.2025.100096
 - 
				[4]
				
Jingshuo Zhang , Yue Zhai , Ziyun Zhao , Jiaxing He , Wei Wei , Jing Xiao , Shichao Wu , Quan-Hong Yang . Research Progress of Functional Binders in Silicon-Based Anodes for Lithium-Ion Batteries. Acta Physico-Chimica Sinica, 2024, 40(6): 2306006-0. doi: 10.3866/PKU.WHXB202306006
 - 
				[5]
				
Siyu Zhang , Kunhong Gu , Bing'an Lu , Junwei Han , Jiang Zhou . Hydrometallurgical Processes on Recycling of Spent Lithium-lon Battery Cathode: Advances and Applications in Sustainable Technologies. Acta Physico-Chimica Sinica, 2024, 40(10): 2309028-0. doi: 10.3866/PKU.WHXB202309028
 - 
				[6]
				
Qi Li , Pingan Li , Zetong Liu , Jiahui Zhang , Hao Zhang , Weilai Yu , Xianluo Hu . Fabricating Micro/Nanostructured Separators and Electrode Materials by Coaxial Electrospinning for Lithium-Ion Batteries: From Fundamentals to Applications. Acta Physico-Chimica Sinica, 2024, 40(10): 2311030-0. doi: 10.3866/PKU.WHXB202311030
 - 
				[7]
				
Ying Li , Yushen Zhao , Kai Chen , Xu Liu , Tingfeng Yi , Li-Feng Chen . Rational Design of Cross-Linked N-Doped C-Sn Nanofibers as Free-Standing Electrodes towards High-Performance Li-Ion Battery Anodes. Acta Physico-Chimica Sinica, 2024, 40(3): 2305007-0. doi: 10.3866/PKU.WHXB202305007
 - 
				[8]
				
Aoyu Huang , Jun Xu , Yu Huang , Gui Chu , Mao Wang , Lili Wang , Yongqi Sun , Zhen Jiang , Xiaobo Zhu . Tailoring Electrode-Electrolyte Interfaces via a Simple Slurry Additive for Stable High-Voltage Lithium-Ion Batteries. Acta Physico-Chimica Sinica, 2025, 41(4): 2408007-0. doi: 10.3866/PKU.WHXB202408007
 - 
				[9]
				
Zixuan Zhao , Miao Fan . “Carbon” with No “Ester”: A Boundless Journey of CO2 Transformation. University Chemistry, 2025, 40(7): 213-217. doi: 10.12461/PKU.DXHX202409040
 - 
				[10]
				
Ke Qiu , Fengmei Wang , Mochou Liao , Kerun Zhu , Jiawei Chen , Wei Zhang , Yongyao Xia , Xiaoli Dong , Fei Wang . A Fumed SiO2-based Composite Hydrogel Polymer Electrolyte for Near-Neutral Zinc-Air Batteries. Acta Physico-Chimica Sinica, 2024, 40(3): 2304036-0. doi: 10.3866/PKU.WHXB202304036
 - 
				[11]
				
Qingtang ZHANG , Xiaoyu WU , Zheng WANG , Xiaomei WANG . Performance of nano Li2FeSiO4/C cathode material co-doped by potassium and chlorine ions. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1689-1696. doi: 10.11862/CJIC.20240115
 - 
				[12]
				
Liangliang Song , Haoyan Liang , Shunqing Li , Bao Qiu , Zhaoping Liu . Challenges and strategies on high-manganese Li-rich layered oxide cathodes for ultrahigh-energy-density batteries. Acta Physico-Chimica Sinica, 2025, 41(8): 100085-0. doi: 10.1016/j.actphy.2025.100085
 - 
				[13]
				
Zhaoxuan ZHU , Lixin WANG , Xiaoning TANG , Long LI , Yan SHI , Jiaojing SHAO . Application of poly(vinyl alcohol) conductive hydrogel electrolytes in zinc ion batteries. Chinese Journal of Inorganic Chemistry, 2025, 41(5): 893-902. doi: 10.11862/CJIC.20240368
 - 
				[14]
				
Yuena Yang , Xufang Hu , Yushan Liu , Yaya Kuang , Jian Ling , Qiue Cao , Chuanhua Zhou . The Realm of Smart Hydrogels. University Chemistry, 2024, 39(5): 172-183. doi: 10.3866/PKU.DXHX202310125
 - 
				[15]
				
Jingyu Cai , Xiaoyu Miao , Yulai Zhao , Longqiang Xiao . Exploratory Teaching Experiment Design of FeOOH-RGO Aerogel for Photocatalytic Benzene to Phenol. University Chemistry, 2024, 39(4): 169-177. doi: 10.3866/PKU.DXHX202311028
 - 
				[16]
				
Xichen YAO , Shuxian WANG , Yun WANG , Cheng WANG , Chuang ZHANG . Oxygen reduction performance of self?supported Fe/N/C three-dimensional aerogel catalyst layers. Chinese Journal of Inorganic Chemistry, 2025, 41(7): 1387-1396. doi: 10.11862/CJIC.20240384
 - 
				[17]
				
Chaolin Mi , Yuying Qin , Xinli Huang , Yijie Luo , Zhiwei Zhang , Chengxiang Wang , Yuanchang Shi , Longwei Yin , Rutao Wang . Galvanic Replacement Synthesis of Graphene Coupled Amorphous Antimony Nanoparticles for High-Performance Sodium-Ion Capacitor. Acta Physico-Chimica Sinica, 2024, 40(5): 2306011-0. doi: 10.3866/PKU.WHXB202306011
 - 
				[18]
				
Jiaxuan Zuo , Kun Zhang , Jing Wang , Xifei Li . Nucleation Regulation and Mechanism of Precursors for Nickel Cobalt Manganese-based Cathode Materials in Lithium-Ion Batteries. Acta Physico-Chimica Sinica, 2025, 41(1): 100009-0. doi: 10.3866/PKU.WHXB202404042
 - 
				[19]
				
Xuechen Hu , Qiuying Xia , Fan Yue , Xinyi He , Zhenghao Mei , Jinshi Wang , Hui Xia , Xiaodong Huang . Electrochemical Characteristics of LiNbO3 Anode Film and Its Applications in All-Solid-State Thin-Film Lithium-Ion Battery. Acta Physico-Chimica Sinica, 2024, 40(2): 2309046-0. doi: 10.3866/PKU.WHXB202309046
 - 
				[20]
				
Feng Zheng , Ruxun Yuan , Xiaogang Wang . “Research-Oriented” Comprehensive Experimental Design in Polymer Chemistry: the Case of Polyimide Aerogels. University Chemistry, 2024, 39(10): 210-218. doi: 10.12461/PKU.DXHX202404027
 
 - 
				[1]
				
 
Metrics
- PDF Downloads(700)
 - Abstract views(1171)
 - HTML views(50)
 
 
Login In
	                    
	                    
	                    
	                    
DownLoad: