Citation:
	            
		            DENG  Xu-Li, ZHAO  Dong-Mei, DING  Zuo-Long, MA  Gui-Lin. Dense 5%Al3+-Doped SnP2O7-SnO2 Composite Ceramic for Application in Intermediate Temperature Fuel Cell[J]. Acta Physico-Chimica Sinica,
							;2013, 29(05): 953-958.
						
							doi:
								10.3866/PKU.WHXB201302254
						
					
				
					
				
	        
- 
	                	
Dense non-doped and 5% (molar fraction) Al3+-doped SnP2O7-SnO2 composite ceramics were prepared by reacting non-doped and 5% Al3+-doped SnO2 porous substrates, respectively, with 85% H3PO4 solution at 600℃. The composite ceramics were characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM), and energy-dispersive spectroscopy (EDS). Their conductivities in the intermediate temperature range of 100-250℃ in wet air and wet H2 atmospheres were measured by electrochemical impedance spectroscopy (EIS). The conductivities of the 5% Al3+-doped SnP2O7-SnO2 composite ceramic were higher than the conductivities of the non-doped SnP2O7-SnO2 composite ceramic and reached 4.30×10-2 S·cm-1 in wet air and 6.25×10-2 S·cm-1 in wet H2 at 250℃. These values are higher than those of the SnP2O7-SnO2 based composite ceramic and SnP2O7-based ceramics under similar conditions. An H2/air fuel cell containing the 5% Al3+-doped SnP2O7-SnO2 composite ceramic as an electrolyte (thickness: 1.45 mm) and porous platinum as electrodes exhibited satisfactory cell performance. The maximum output power densities of this cell were 52.0 mW·cm-2 at 175℃, 61.9 mW·cm-2 at 200℃ and 82.3 mW·cm-2 at 250℃. Such od performance is related to the high conductivity and sufficient density of the composite ceramic electrolyte as well as the low interfacial polarization resistance of the cell.
- 
								Keywords:
								
 - 
												
SnP2O7
, - Composite ceramic,
 - Electrolyte,
 - Conductivity,
 - Fuel cell
 
 - 
												
 - 
	                	
	                 - 
	                	
- 
			
                    [1]
                
			
(1) Steele, B. C. H.; Heinzel, A. Nature 2001, 414, 345. doi: 10.1038/35104620
 - 
			
                    [2]
                
			
(2) Haile, S. M.; Boysen, D. A.; Chisholm, C. R. I.; Merle, R. B.Nature 2001, 410, 910. doi: 10.1038/35073536
 - 
			
                    [3]
                
			
(3) Norby, T. Nature 2001, 410, 877. doi: 10.1038/35073718
 - 
			
                    [4]
                
			
(4) Fu, X. Z.; Luo, J. L.; Sanger, A. R.; Luo, N.; Chuang, K. T.J. Power Sources 2010, 195, 2659. doi: 10.1016/j.jpowsour.2009.10.069
 - 
			
                    [5]
                
			
(5) Chen, D. J.; Ran, R.; Shao, Z. P. J. Power Sources 2010, 195,4667. doi: 10.1016/j.jpowsour.2010.01.082
 - 
			
                    [6]
                
			
(6) Wu, Y. Z.; Dong, D. H.; Ran, R.; Zeng, Y.;Wang, K.; Shao, Z.P.;Wang, H. T. J. Am. Ceram. Soc. 2011, 94, 3666. doi: 10.1111/jace.2011.94.issue-11
 - 
			
                    [7]
                
			
(7) Wang, M. Y.; Qiu, L. G.; Ma, G. L. Chin. J. Chem. 2007, 25,1273.
 - 
			
                    [8]
                
			
(8) Liu, J.W.; Zhou, D. F.; Yang, M.; Luo, F.; Meng, J. ActaPhys. -Chim. Sin. 2012, 28, 1380. [刘建伟, 周德凤, 杨梅,罗飞, 孟健. 物理化学学报, 2012, 28, 1380.] doi: 10.3866/PKU.WHXB201203304
 - 
			
                    [9]
                
			
(9) Iwahara, H.; Asakura, Y.; Katahira, K.; Tanaka, M. Solid StateIonics 2004, 168, 299. doi: 10.1016/j.ssi.2003.03.001
 - 
			
                    [10]
                
			
(10) Baker, R. T.; Salar, R.; Potter, A. R.; Metcalfe, I. S.; Sahibzada,M. J. Power Sources 2009, 191, 448. doi: 10.1016/j.jpowsour.2009.02.039
 - 
			
                    [11]
                
			
(11) Li, Y. Z.; Kunitake, T.; Aoki, Y.; Muto, E. Adv. Mater. 2008, 20,2398. doi: 10.1002/adma.v20:12
 - 
			
                    [12]
                
			
(12) Yang, J. F.; Cheng, J. G.; Fan, Y. M.;Wang, R.; Gao, J. F. ActaPhys. -Chim. Sin. 2012, 28, 95. [杨俊芳, 程继贵, 樊玉萌,王睿, 高建峰. 物理化学学报, 2012, 28, 95.] doi: 10.3866/PKU.WHXB201111161
 - 
			
                    [13]
                
			
(13) Wang, H. T.; Liu, J.W.;Wang,W. B.; Ma, G. L. J. PowerSources 2010, 195, 5596. doi: 10.1016/j.jpowsour.2010.03.087
 - 
			
                    [14]
                
			
(14) Wang, H. T.; Zhang, H. M.; Xiao, G. X.; Zhang, F.; Yu, T.; Xiao,J.; Ma, G. L. J. Power Sources 2011, 196, 683. doi: 10.1016/j.jpowsour.2010.07.067
 - 
			
                    [15]
                
			
(15) Nagao, M.; Kamiya, T.; Heo, P.; Tomita, A.; Hibino, T.; Sano,M. J. Electrochem. Soc. 2006, 153, A1604.
 - 
			
                    [16]
                
			
(16) Lan, R.; Tao, S.W. J. Alloy. Compd. 2009, 486, 380. doi: 10.1016/j.jallcom.2009.06.203
 - 
			
                    [17]
                
			
(17) Sun, X. F.;Wang, S. R.;Wang, Z. R.; Ye, X. F.;Wen, T. L.;Huang, F. Q. Solid State Ionics 2008, 179, 1138. doi: 10.1016/j.ssi.2008.01.046
 - 
			
                    [18]
                
			
(18) Alberti, G.; Casciola, M.; Cavalaglio, S.; Vivani, R. Solid StateIonics 1999, 125, 91. doi: 10.1016/S0167-2738(99)00162-9
 - 
			
                    [19]
                
			
(19) Tomita, A.; Kajiyama, N.; Kamiya, T.; Nagao, M.; Hibino, T.J. Electrochem. Soc. 2007, 154, B1265.
 - 
			
                    [20]
                
			
(20) Wang, H. T.; Sun, L.; Chen, J. T.; Luo, C. H. Acta Phys. -Chim.Sin. 2012, 28, 2893. [王洪涛, 孙林, 陈继堂, 罗春华. 物理化学学报, 2012, 28, 2893.] doi: 10.3866/PKU.WHXB201210101
 - 
			
                    [21]
                
			
(21) Zhang, H. M.; Xiao, J.; Yang, Z. J.;Wang, H. T.; Ma, G. L.Chin. J. Chem. 2012, 30, 1826. doi: 10.1002/cjoc.v30.8
 - 
			
                    [22]
                
			
(22) ver, R. K. B.;Withers, N. D.; Allen, S.;Withers, R. L.;Evans, J. S. O. J. Solid State Chem. 2002, 166, 42. doi: 10.1006/jssc.2002.9554
 - 
			
                    [23]
                
			
(23) Phadke, S. R.; Bowers, C. R.;Wachsman, E. D.; Nino, J. C.Solid State Ionics 2011, 183, 26. doi: 10.1016/j.ssi.2010.12.011
 - 
			
                    [24]
                
			
(24) Xiao, J.; Zhang, H. M.; Yang, Z. J.;Wang, H. T.; Ma, G. L.;Zhou, Z. F. J. Alloy. Compd. 2012, 521, 106. doi: 10.1016/j.jallcom.2012.01.058
 - 
			
                    [25]
                
			
(25) Sato, Y.; Shen, Y.; Nishida, M.; Kanematsu,W.; Hibino, T.J. Mater. Chem. 2012, 22, 3973. doi: 10.1039/c2jm15335a
 - 
			
                    [26]
                
			
(26) Shen, Y.; Nishida, M.; Kanematsu,W.; Hibino, T. J. Mater.Chem. 2011, 21, 663. doi: 10.1039/c0jm02596h
 - 
			
                    [27]
                
			
(27) Wang, H. T.; Zhao, D. M.; Ding, Z. L.; Deng, X. L.; Ma, G. L.J. Power Sources 2013, 222, 467. doi: 10.1016/j.jpowsour.2012.09.001
 - 
			
                    [28]
                
			
(28) Wang, H. T.; Xiao, J.; Zhou, Z. F.; Zhang, F.; Zhang, H. M.; Ma,G. L. Solid State Ionics 2010, 181, 1521. doi: 10.1016/j.ssi.2010.08.029
 - 
			
                    [29]
                
			
(29) Tao, S.W. Solid State Ionics 2009, 180, 148. doi: 10.1016/j.ssi.2008.11.006
 
 - 
			
                    [1]
                
			
 - 
	                	
						
						
						
						
	                 - 
	                	
- 
				[1]
				
Jiayu Tang , Jichuan Pang , Shaohua Xiao , Xinhua Xu , Meifen Wu . Improvement for Measuring Transference Numbers of Ions by Moving-Boundary Method. University Chemistry, 2024, 39(5): 193-200. doi: 10.3866/PKU.DXHX202311021
 - 
				[2]
				
Ran HUO , Zhaohui ZHANG , Xi SU , Long CHEN . Research progress on multivariate two dimensional conjugated metal organic frameworks. Chinese Journal of Inorganic Chemistry, 2024, 40(11): 2063-2074. doi: 10.11862/CJIC.20240195
 - 
				[3]
				
Ru SONG , Biao WANG , Chunling LU , Bingbing NIU , Dongchao QIU . Electrochemical properties of stable and highly active PrBa0.5Sr0.5Fe1.6Ni0.4O5+δ cathode material. Chinese Journal of Inorganic Chemistry, 2025, 41(4): 639-649. doi: 10.11862/CJIC.20240397
 - 
				[4]
				
Ke Qiu , Fengmei Wang , Mochou Liao , Kerun Zhu , Jiawei Chen , Wei Zhang , Yongyao Xia , Xiaoli Dong , Fei Wang . A Fumed SiO2-based Composite Hydrogel Polymer Electrolyte for Near-Neutral Zinc-Air Batteries. Acta Physico-Chimica Sinica, 2024, 40(3): 2304036-0. doi: 10.3866/PKU.WHXB202304036
 - 
				[5]
				
Tao Jiang , Yuting Wang , Lüjin Gao , Yi Zou , Bowen Zhu , Li Chen , Xianzeng Li . Experimental Design for the Preparation of Composite Solid Electrolytes for Application in All-Solid-State Batteries: Exploration of Comprehensive Chemistry Laboratory Teaching. University Chemistry, 2024, 39(2): 371-378. doi: 10.3866/PKU.DXHX202308057
 - 
				[6]
				
Jiandong Liu , Zhijia Zhang , Kamenskii Mikhail , Volkov Filipp , Eliseeva Svetlana , Jianmin Ma . Research Progress on Cathode Electrolyte Interphase in High-Voltage Lithium Batteries. Acta Physico-Chimica Sinica, 2025, 41(2): 2308048-0. doi: 10.3866/PKU.WHXB202308048
 - 
				[7]
				
Zhaoxuan ZHU , Lixin WANG , Xiaoning TANG , Long LI , Yan SHI , Jiaojing SHAO . Application of poly(vinyl alcohol) conductive hydrogel electrolytes in zinc ion batteries. Chinese Journal of Inorganic Chemistry, 2025, 41(5): 893-902. doi: 10.11862/CJIC.20240368
 - 
				[8]
				
Mingyang Men , Jinghua Wu , Gaozhan Liu , Jing Zhang , Nini Zhang , Xiayin Yao . Sulfide Solid Electrolyte Synthesized by Liquid Phase Approach and Application in All-Solid-State Lithium Batteries. Acta Physico-Chimica Sinica, 2025, 41(1): 100004-0. doi: 10.3866/PKU.WHXB202309019
 - 
				[9]
				
Da Wang , Xiaobin Yin , Jianfang Wu , Yaqiao Luo , Siqi Shi . All-Solid-State Lithium Cathode/Electrolyte Interfacial Resistance: From Space-Charge Layer Model to Characterization and Simulation. Acta Physico-Chimica Sinica, 2024, 40(7): 2307029-0. doi: 10.3866/PKU.WHXB202307029
 - 
				[10]
				
Shiqi Zhang , Heng Zhang , Aiwen Lei . 从物理化学的角度看化学能的利用. University Chemistry, 2025, 40(6): 310-315. doi: 10.12461/PKU.DXHX202408124
 - 
				[11]
				
Xichen YAO , Shuxian WANG , Yun WANG , Cheng WANG , Chuang ZHANG . Oxygen reduction performance of self?supported Fe/N/C three-dimensional aerogel catalyst layers. Chinese Journal of Inorganic Chemistry, 2025, 41(7): 1387-1396. doi: 10.11862/CJIC.20240384
 - 
				[12]
				
Hanmei Lü , Xin Chen , Qifu Sun , Ning Zhao , Xiangxin Guo . Uniform Garnet Nanoparticle Dispersion in Composite Polymer Electrolytes. Acta Physico-Chimica Sinica, 2024, 40(3): 2305016-0. doi: 10.3866/PKU.WHXB202305016
 - 
				[13]
				
Fengqiao Bi , Jun Wang , Dongmei Yang . Specialized Experimental Design for Chemistry Majors in the Context of “Dual Carbon”: Taking the Assembly and Performance Evaluation of Zinc-Air Fuel Batteries as an Example. University Chemistry, 2024, 39(4): 198-205. doi: 10.3866/PKU.DXHX202311069
 - 
				[14]
				
Xinran Zhang , Siqi Liu , Yichi Chen , Qingli Zou , Qinghong Xu , Yaqin Huang . From Protein to Energy Storage Materials: Edible Gelatin Jelly Electrolyte. University Chemistry, 2025, 40(7): 255-266. doi: 10.12461/PKU.DXHX202408104
 - 
				[15]
				
Yan Zhang , Xiaoyan Cao , Yiming Li , Shuwei Xia , Mutai Bao . Comparison of Electrolyte Solutions Section in Physical Chemistry Textbooks at Home and Abroad. University Chemistry, 2025, 40(9): 303-309. doi: 10.12461/PKU.DXHX202502027
 - 
				[16]
				
Changsheng An , Tao Liu . Decoding SEI chemistry at the lithium-metal potential. Acta Physico-Chimica Sinica, 2025, 41(9): 100101-0. doi: 10.1016/j.actphy.2025.100101
 - 
				[17]
				
Zhi Dou , Huiyu Duan , Yixi Lin , Yinghui Xia , Mingbo Zheng , Zhenming Xu . High-Throughput Screening Lithium Alloy Phases and Investigation of Ion Transport for Solid Electrolyte Interphase Layer. Acta Physico-Chimica Sinica, 2024, 40(3): 2305039-0. doi: 10.3866/PKU.WHXB202305039
 - 
				[18]
				
Yu Peng , Jiawei Chen , Yue Yin , Yongjie Cao , Mochou Liao , Congxiao Wang , Xiaoli Dong , Yongyao Xia . Tailored cathode electrolyte interphase via ethylene carbonate-free electrolytes enabling stable and wide-temperature operation of high-voltage LiCoO2. Acta Physico-Chimica Sinica, 2025, 41(8): 100087-0. doi: 10.1016/j.actphy.2025.100087
 - 
				[19]
				
Kai PENG , Xinyi ZHAO , Zixi CHEN , Xuhai ZHANG , Yuqiao ZENG , Jianqing JIANG . Progress in the application of high-entropy alloys and high-entropy ceramics in water electrolysis. Chinese Journal of Inorganic Chemistry, 2025, 41(7): 1257-1275. doi: 10.11862/CJIC.20240454
 - 
				[20]
				
Qingqing SHEN , Xiangbowen DU , Kaicheng QIAN , Zhikang JIN , Zheng FANG , Tong WEI , Renhong LI . Self-supporting Cu/α-FeOOH/foam nickel composite catalyst for efficient hydrogen production by coupling methanol oxidation and water electrolysis. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1953-1964. doi: 10.11862/CJIC.20240028
 
 - 
				[1]
				
 
Metrics
- PDF Downloads(700)
 - Abstract views(929)
 - HTML views(1)
 
 
Login In
	                    
	                    
	                    
	                    
DownLoad: