Citation: XU Yong, JIANG Pei-Wen, LI Quan-Xin. Carbon Nanofibers-Supported Ni Catalyst for Hydrogen Production from Bio-Oil through Low-Temperature Reforming[J]. Acta Physico-Chimica Sinica, ;2013, 29(05): 1041-1047. doi: 10.3866/PKU.WHXB201302225
-
Hydrogen is a clean energy with high heat value that has been widely used in industry. Previous studies indicate that biomass can be converted in to gaseous fuels (hydrogen), liquid fuels and other chemicals. Biomass is the only renewable carbon resource and has attracted increasing attention because of the increasing price of oil and its environmental friendliness. To decrease energy consumption and minimize cost, it is very important to develop a process to produce hydrogen from bio-oil by low temperature steam reforming over non-noble metal catalysts. This work reports a carbon nanofiberssupported Ni (Ni/CNFs) catalyst prepared by the homogeneous impregnation method. The Ni/CNFs catalyst was successfully used to produce hydrogen via low-temperature (350-550℃) steam reforming of bio-oil. The effects of temperature and water steam/carbon molar ratio (nS/nC) on the reforming of bio-oil were investigated. The highest carbon conversion and H2 yield over the 22% Ni/CNFs catalyst reached about 94.7% and 92.1%, respectively, at a reforming temperature of 550℃. The Ni/CNFs catalyst containing a uniform Ni distribution exhibited a much higher activity in low-temperature reforming of bio-oil at 350-450℃ than the usual Ni/Al2O3 catalyst. Reaction conditions were investigated and catalysts were characterized to reveal the relationship between catalyst structure and performance for hydrogen production from bio-oil.
-
-
[1]
(1) Galdámez, J. R.; García, L.; Bilbao, R. Energy Fuels 2005, 19,1133. doi: 10.1021/ef049718g
-
[2]
(2) Hou, T.; Yuan, L. X.; Ye, T. Q.; ng, L.; Tu, J.; Yamamoto, M.;Youshifumi, T.; Li, Q. X. Int. J. Hydrog. Energy 2009, 34, 9095.doi: 10.1016/j.ijhydene.2009.09.012
-
[3]
(3) Haryanto, A.; Fernando, S.; Murali, N.; Adhikari, S. EnergyFuels 2005, 19, 2098. doi: 10.1021/ef0500538
-
[4]
(4) Das, D.; Vezirog?lu, T. N. Int. J. Hydrog. Energy 2001, 26, 13.doi: 10.1016/S0360-3199(00)00058-6
-
[5]
(5) Nourouzi, L. S.; Larachi, F.; Benali, M. Ind. Eng. Chem. Res.2008, 47, 7118. doi: 10.1021/ie800773a
-
[6]
(6) Holladay, J. D.; Hu, J.; King, D. L.;Wang, Y. Catal. Today2009, 139, 244. doi: 10.1016/j.cattod.2008.08.039
-
[7]
(7) Medrano, J. A.; Oliva, M.; Ruiz, J.; García, L.; Arauzo, J.Energy 2011, 36, 2215. doi: 10.1016/j.energy.2010.03.059
-
[8]
(8) Bridgwater, A. V. Biomass Bioenerg. 2012, 38, 68. doi: 10.1016/j.biombioe.2011.01.048
-
[9]
(9) Yildiz, K.; Arif, H, I. Int. J. Hydrog. Energy 2009, 34, 8799.doi: 10.1016/j.ijhydene.2009.08.078
-
[10]
(10) Kan, T.; Xiong, J. X.; Li, X. L.; Ye, T. Q.; Yuan, L. X.;Youshifumi, T.; Yamamoto, M.; Li, Q. X. Int. J. Hydrog. Energy2010, 35, 518. doi: 10.1016/j.ijhydene.2009.11.010
-
[11]
(11) Ye, T. Q.; Yuan, L. X.; Chen, Y. Q.; Kan, T.; Tu, J.; Zhu, X. F.;Torimoto, Y.; Yamamoto, M.; Li, Q. X. Catal. Lett. 2009, 127,323. doi: 10.1007/s10562-008-9683-2
-
[12]
(12) Ekaterini, C. V.; Angeliki, A. L. Appl. Catal. A 2007, 351, 111.
-
[13]
(13) Xie, J. J.; Su, D. R.; Yin, X. L.;Wu, C. Z.; Zhu, J. X. Int. J.Hydrog. Energy 2011, 36, 15560.
-
[14]
(14) Kinoshita, C. M.; Turn, S. Q. Int. J. Hydrog. Energy 2003, 28,1065.
-
[15]
(15) Chornet, E.; Czernik, S. Nature 2002, 418, 928.
-
[16]
(16) Huber, G.W.; Shabaker, J.W.; Dumesic, J. A. Science 2003,300, 2075. doi: 10.1126/science.1085597
-
[17]
(17) Stefan, C.; Robert, E.; Richard, F. Catal. Today 2007, 129, 265.doi: 10.1016/j.cattod.2006.08.071
-
[18]
(18) Ekaterini, C. V.; Angeliki, A. L. Int. J. Hydrog. Energy 2007, 32,212. doi: 10.1016/j.ijhydene.2006.08.021
-
[19]
(19) Jonathan, R. M.; Joelle, D. B.; Shannon, M.; Robert, J. E.;Stefan, C.; Richard, J. F.; Anthony, M. D. Int. J. Hydrog. Energy2009, 34, 8519. doi: 10.1016/j.ijhydene.2009.07.099
-
[20]
(20) Kechagiopoulos, P. N.; Voutetakis, S. S.; Lemonidou, A. A.;Vasalos, I. A. Energy Fuels 2006, 20, 2155. doi: 10.1021/ef060083q
-
[21]
(21) Ba, T.; Chaala, A.; Garcia, P. M.; Rodrigue, D.; Roy, C. EnergyFuels 2004, 18, 704. doi: 10.1021/ef030118b
-
[22]
(22) Seyedeyn, A. F.; Salehi, E.; Abedi, J.; Harding, T. Fuel Process.Technol. 2011, 92, 563. doi: 10.1016/j.fuproc.2010.11.012
-
[23]
(23) Rioche, C.; Kulkarni, S.; Meunier, F. C.; Breen, J. P.; Burch, R.Appl. Catal. B 2005, 61, 130. doi: 10.1016/j.apcatb.2005.04.015
-
[24]
(24) Garcia, L.; French, R.; Czernik, S.; Chornet, E. Appl. Catal. A2000, 201, 225. doi: 10.1016/S0926-860X(00)00440-3
-
[25]
(25) Takanabe, K.; Aika, K.; Seshan, K.; Lefferts, L. J. Catal. 2004,227, 101. doi: 10.1016/j.jcat.2004.07.002
-
[26]
(26) Liguras, D. K.; Kondarides, D. I.; Verykios, X. E. Appl. Catal.B 2003, 43, 345. doi: 10.1016/S0926-3373(02)00327-2
-
[27]
(27) Kugai, J.; Velu, S.; Song, C. Catal. Lett. 2005, 101, 255. doi: 10.1007/s10562-005-4901-7
-
[28]
(28) Aupretre, F.; Descorme, C.; Duprez, D. Catal. Commun. 2002,3, 263. doi: 10.1016/S1566-7367(02)00118-8
-
[29]
(29) Domine, M. E.; Iojoiu, E. E.; Davidian, T.; Guilhaume, N.;Mirodatos, C. Catal. Today 2008, 133-135, 565.
-
[30]
(30) Xu, X.W.; Jiang, E. C.;Wang, M. F.; Li, B. S. Renew. Energy2012, 39, 126. doi: 10.1016/j.renene.2011.07.030
-
[31]
(31) Wang, S. R.; Li, X. B; Guo, L.; Luo, Z. Y. Int. J. Hydrog.Energy 2012, 37, 11122. doi: 10.1016/j.ijhydene.2012.05.011
-
[32]
(32) Wang, C.; Qiu, J. S.; Liang, C. H.; Xing, L.; Yang, X. M. Catal.Commun. 2008, 9, 1749.
-
[33]
(33) Bezemer, G. L.; Radstake, P. B.; Falke, U.; Oosterbeek, H.;Kuipers, H, P.; Dillen, A. J.; Jong, K. P. J. Catal. 2006, 237,152. doi: 10.1016/j.jcat.2005.10.031
-
[34]
(34) Eva, D.; Marta, L.; Salvador, O. Int. J. Hydrog. Energy 2010,35, 4576.
-
[35]
(35) Wang, H. J.; Zhao, F. Y.; Fujitac, S. I.; Masahiko, A. Catal.Commun. 2008, 9, 362. doi: 10.1016/j.catcom.2007.07.002
-
[36]
(36) Cortright, R. D.; Davda, R. R.; Dumesic, J. A. Nature 2002,418, 964. doi: 10.1038/nature01009
-
[1]
-
-
[1]
Zhiwen HU , Weixia DONG , Qifu BAO , Ping LI . Low-temperature synthesis of tetragonal BaTiO3 for piezocatalysis. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 857-866. doi: 10.11862/CJIC.20230462
-
[2]
Qin Hu , Liuyun Chen , Xinling Xie , Zuzeng Qin , Hongbing Ji , Tongming Su . Ni掺杂构建电子桥及激活MoS2惰性基面增强光催化分解水产氢. Acta Physico-Chimica Sinica, 2024, 40(11): 2406024-. doi: 10.3866/PKU.WHXB202406024
-
[3]
Tongtong Zhao , Yan Wang , Shiyue Qin , Liang Xu , Zhenhua Li . New Experiment Development: Upgrading and Regeneration of Discarded PET Plastic through Electrocatalysis. University Chemistry, 2024, 39(3): 308-315. doi: 10.3866/PKU.DXHX202309003
-
[4]
Dan Li , Hui Xin , Xiaofeng Yi . Comprehensive Experimental Design on Ni-based Catalyst for Biofuel Production. University Chemistry, 2024, 39(8): 204-211. doi: 10.3866/PKU.DXHX202312046
-
[5]
Yuping Wei , Yiting Wang , Jialiang Jiang , Jinxuan Deng , Hong Zhang , Xiaofei Ma , Junjie Li . Interdisciplinary Teaching Practice——Flexible Wearable Electronic Skin for Low-Temperature Environments. University Chemistry, 2024, 39(10): 261-270. doi: 10.12461/PKU.DXHX202404007
-
[6]
Wenlong LI , Xinyu JIA , Jie LING , Mengdan MA , Anning ZHOU . Photothermal catalytic CO2 hydrogenation over a Mg-doped In2O3-x catalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 919-929. doi: 10.11862/CJIC.20230421
-
[7]
Kun WANG , Wenrui LIU , Peng JIANG , Yuhang SONG , Lihua CHEN , Zhao DENG . Hierarchical hollow structured BiOBr-Pt catalysts for photocatalytic CO2 reduction. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1270-1278. doi: 10.11862/CJIC.20240037
-
[8]
Juntao Yan , Liang Wei . 2D S-Scheme Heterojunction Photocatalyst. Acta Physico-Chimica Sinica, 2024, 40(10): 2312024-. doi: 10.3866/PKU.WHXB202312024
-
[9]
Yuanyin Cui , Jinfeng Zhang , Hailiang Chu , Lixian Sun , Kai Dai . Rational Design of Bismuth Based Photocatalysts for Solar Energy Conversion. Acta Physico-Chimica Sinica, 2024, 40(12): 2405016-. doi: 10.3866/PKU.WHXB202405016
-
[10]
Zhanggui DUAN , Yi PEI , Shanshan ZHENG , Zhaoyang WANG , Yongguang WANG , Junjie WANG , Yang HU , Chunxin LÜ , Wei ZHONG . Preparation of UiO-66-NH2 supported copper catalyst and its catalytic activity on alcohol oxidation. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 496-506. doi: 10.11862/CJIC.20230317
-
[11]
Juan WANG , Zhongqiu WANG , Qin SHANG , Guohong WANG , Jinmao LI . NiS and Pt as dual co-catalysts for the enhanced photocatalytic H2 production activity of BaTiO3 nanofibers. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1719-1730. doi: 10.11862/CJIC.20240102
-
[12]
Wen YANG , Didi WANG , Ziyi HUANG , Yaping ZHOU , Yanyan FENG . La promoted hydrotalcite derived Ni-based catalysts: In situ preparation and CO2 methanation performance. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 561-570. doi: 10.11862/CJIC.20230276
-
[13]
Asif Hassan Raza , Shumail Farhan , Zhixian Yu , Yan Wu . 用于高效制氢的双S型ZnS/ZnO/CdS异质结构光催化剂. Acta Physico-Chimica Sinica, 2024, 40(11): 2406020-. doi: 10.3866/PKU.WHXB202406020
-
[14]
Qingqing SHEN , Xiangbowen DU , Kaicheng QIAN , Zhikang JIN , Zheng FANG , Tong WEI , Renhong LI . Self-supporting Cu/α-FeOOH/foam nickel composite catalyst for efficient hydrogen production by coupling methanol oxidation and water electrolysis. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1953-1964. doi: 10.11862/CJIC.20240028
-
[15]
Zhiquan Zhang , Baker Rhimi , Zheyang Liu , Min Zhou , Guowei Deng , Wei Wei , Liang Mao , Huaming Li , Zhifeng Jiang . Insights into the Development of Copper-based Photocatalysts for CO2 Conversion. Acta Physico-Chimica Sinica, 2024, 40(12): 2406029-. doi: 10.3866/PKU.WHXB202406029
-
[16]
Shuang Yang , Qun Wang , Caiqin Miao , Ziqi Geng , Xinran Li , Yang Li , Xiaohong Wu . Ideological and Political Education Design for Research-Oriented Experimental Course of Highly Efficient Hydrogen Production from Water Electrolysis in Aerospace Perspective. University Chemistry, 2024, 39(11): 269-277. doi: 10.12461/PKU.DXHX202403044
-
[17]
Ruolin CHENG , Haoran WANG , Jing REN , Yingying MA , Huagen LIANG . Efficient photocatalytic CO2 cycloaddition over W18O49/NH2-UiO-66 composite catalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 523-532. doi: 10.11862/CJIC.20230349
-
[18]
Yi YANG , Shuang WANG , Wendan WANG , Limiao CHEN . Photocatalytic CO2 reduction performance of Z-scheme Ag-Cu2O/BiVO4 photocatalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 895-906. doi: 10.11862/CJIC.20230434
-
[19]
Jiapei Zou , Junyang Zhang , Xuming Wu , Cong Wei , Simin Fang , Yuxi Wang . A Comprehensive Experiment Based on Electrocatalytic Nitrate Reduction into Ammonia: Synthesis, Characterization, Performance Exploration, and Applicable Design of Copper-based Catalysts. University Chemistry, 2024, 39(6): 373-382. doi: 10.3866/PKU.DXHX202312081
-
[20]
Yurong Tang , Yunren Shi , Yi Xu , Bo Qin , Yanqin Xu , Yunfei Cai . Innovative Experiment and Course Transformation Practice of Visible-Light-Mediated Photocatalytic Synthesis of Isoquinolinone. University Chemistry, 2024, 39(5): 296-306. doi: 10.3866/PKU.DXHX202311087
-
[1]
Metrics
- PDF Downloads(497)
- Abstract views(630)
- HTML views(17)