Citation: LIN Jian, CAI Fan, ZHANG Guo-Yu, YANG Le-Fu, YANG Jin-Yu, FANG Wei-Ping. Preparation of Morphology-Tuned γ-MnO2 and Catalytic Performance for the Liquid-Phase Oxidation of Toluene[J]. Acta Physico-Chimica Sinica, ;2013, 29(03): 597-604. doi: 10.3866/PKU.WHXB201301041 shu

Preparation of Morphology-Tuned γ-MnO2 and Catalytic Performance for the Liquid-Phase Oxidation of Toluene

  • Received Date: 20 September 2012
    Available Online: 4 January 2013

    Fund Project: 国家重点基础研究发展规划项目(973) (2010CB226903)资助 (973) (2010CB226903)

  • Introducing surfactants including hexadecyltrimethylammonium bromide (CTAB), macro l 6000 (PEG6000), and poly(ethylene glycol)-block-poly(propylene glycol)-block-poly(ethylene glycol) triblock copolymer (P123) into the refluxing aqueous crystal nucleus slurry yielded morphology-tuned microcrystalline γ-MnO2. γ-MnO2 and the influence of surfactant modification were investigated by X-ray diffraction (XRD), scanning electron microscopy (SEM), N2 adsorption (BET), thermogravimetry analysis (TGA), O2 temperature programmed desorption (O2-TPD), and temperature programmed H2 reduction (H2-TPR). Surfactants led to differences in γ-MnO2 morphology, surface area, oxygen desorption behavior and reducibility. The effect of reflux time on catalyst morphology is discussed. The catalytic performance of γ-MnO2 during the solvent-free atmospheric oxidation of toluene was evaluated. PEG6000 modified γ-MnO2 exhibited the highest catalytic activity judging by surface area because of a greater mixed valency and more anion vacancies. The greatest mass specific activity was obtained for P123 modified γ-MnO2 with the largest surface area. Optimized reaction conditions yielded an 18.1% toluene conversion, and 87.4 and 73.2% total selectivity and selectivity for benzoic acid, respectively.

  • 加载中
    1. [1]

      (1) Li, X. Q. Liquid-Phase Oxidation of Toluene over ManganeseOxides. Ph. D. Dissertation, Dalian Institute of ChemicalPhysics, Chinese Academy of Sciences, Dalian, 2006. [李晓强. 锰氧化物对甲苯液相氧化反应的催化作用研究[D]. 大连:中国科学院大连化学物理研究所, 2006.]

    2. [2]

      (2) Jin, L.; Chen, C. H.; Crisostomo, V. M. B.; Xu, L. P.; Son, Y. C.;Suib, S. L. Appl. Catal. A 2009, 355, 169. doi: 10.1016/j.apcata.2008.12.012

    3. [3]

      (3) Suresh, A. K.; Sharma, M. M.; Sridhar, T. Ind. Eng. Chem. Res.2000, 39 (11), 3958. doi: 10.1021/ie0002733

    4. [4]

      (4) Holtz, H. D.; Gardner, L. E. Promoted Liquid Phase Oxidationof Alkyl Aromatic Compounds. U.S. Pat. 4088823, 1978.

    5. [5]

      (5) Kantem, M. L.; Choudary, B. M.; Sreekanth, P.; Rao, K. K.;Naik, K.; Kumar, T. P.; Khan, A. A. Process for the Productionof Benzaldehyde by the Catalytic Liquid Phase Air Oxidation ofToluene. U.S. Pat. 6495726 B1, 2002.

    6. [6]

      (6) Kantem, M. L.; Sreekanth, P.; Rao, K. K.; Kumar, T. P.; Rao, B.P.; Choudary, B. M. Selective Liquid Phase Air Oxidation ofToluene Catalysed by Composite Catalytic System. U.S. Pat.6743952 B2, 2004.

    7. [7]

      (7) Guo, C. C.; Liu, Q.;Wang, X. T.; Hu, H. Y. Appl. Catal. A 2005,282, 55. doi: 10.1016/j.apcata.2004.11.045

    8. [8]

      (8) Ilyas, M.; Sadiq, M. Catal. Lett. 2009, 128 (3-4), 337. doi: 10.1007/s10562-008-9750-8

    9. [9]

      (9) Mohammad, S.; Mohammad, I. Chin. J. Chem. 2010, 28 (11),2216. doi: 10.1002/cjoc.201090366

    10. [10]

      (10) Xue, M.W.; Chen, H.; Zhang, H. L.; Auroux, A.; Shen, J. Y.Appl. Catal. A 2010, 379 (1-2), 7. doi: 10.1016/j.apcata.2010.02.023

    11. [11]

      (11) Xue, M.W.; Chen, H.; Ge, J. Z.; Shen, J. Y. MicroporousMesoporous Mat. 2010, 131 (1-3), 37. doi: 10.1016/j.micromeso.2009.11.038

    12. [12]

      (12) Lv, J. G.; Shen, Y.; Peng, L. M.; Guo, X. F.; Ding,W. P. Chem.Commun. 2010, 46, 5909. doi: 10.1039/c0cc00777c

    13. [13]

      (13) Kesavan, L.; Tiruvalam, R.; Ab Rahim, M. H.; bin Saiman, M. I.;Enache, D. I.; Jenkins, R. L.; Dimitratos, N.; Lopez-Sanchez, J.A.; Taylor, S. H.; Knight, D.W.; Kiely, C. J.; Hutchings, G. J.Science 2011, 311, 195.

    14. [14]

      (14) ethals, M.; Vanderstraeten, B.; Berghmans, J.; De Smedt, G.;Vliegen, S.; Van't Oost, E. J. Hazard. Mater. 1999, 70 (3), 93.doi: 10.1016/S0304-3894

    15. [15]

      (15) Zhao,W. F. J. Safety Sci. Tech. 2008, 4 (3), 157. [赵文芳.中国安全生产科学技术, 2008, 4 (3), 157.]

    16. [16]

      (16) Thomas, J. M.; Raja, R.; Sankar, G.; Bell, R. G. Nature 1999,398 (6724), 227. doi: 10.1038/18417

    17. [17]

      (17) Perez-Benito, J. F. J. Phys. Chem. C 2009, 113 (36), 15982.

    18. [18]

      (18) Lon , A.; Liotta, L. F.; Di Carlo, G.; Giannici, F.; Venezia, A.M.; Martorana, A. Chem. Mater. 2010, 22, 3952. doi: 10.1021/cm100697b

    19. [19]

      (19) Fu, X. B.; Feng, J. Y.;Wang, H.; Ng, K. M. Nanotechnology2009, 20, 375601. doi: 10.1088/0957-4484/20/37/375601

    20. [20]

      (20) Liao,W. P.; Yang, L.;Wang, F.; Hu, Y. F.; Sheng, Z. Y. ActaChimica Sinica 2011, 69 (22), 2723. [廖伟平, 杨柳,王飞, 胡宇峰, 盛重义. 化学学报, 2011, 69 (22), 2723.]

    21. [21]

      (21) Zhao, F. M.; Ma, C. A.; Chu, Y. Q.; Xu, Y. H. Acta Phys. -Chim.Sin. 2006, 22 (6), 716. [赵峰鸣, 马淳安, 褚有群, 徐颖华.物理化学学报, 2006, 22 (6), 716.] doi: 10.3866/PKU.WHXB20060614

    22. [22]

      (22) Wang, Q.; Pan, J. Q.; Sun, Y. Z.;Wang, Z. H. J. Power Sources2012, 199, 355. doi: 10.1016/j.jpowsour.2011.10.061

    23. [23]

      (23) Zhao, J. Z.; Tao, Z. L.; Liang, J.; Chen, J. Cryst. Growth Des.2008, 8 (8), 2799. doi: 10.1021/cg701044b

    24. [24]

      (24) Wu, C. Z.; Xie,W.; Zhang, M.; Bai, L. F.; Yang, J. L.; Xie, Y.Chem. Eur. J. 2009, 15, 492. doi: 10.1002/chem.v15:2

    25. [25]

      (25) Qin, Q. D.;Wang, Q. Q.; Fu, D. F.; Ma, J. Chem. Eng. J. 2011,172 (1), 68. doi: 10.1016/j.cej.2011.05.066

    26. [26]

      (26) Xia, X. Battery Bimonthly 2005, 35 (1), 27. [夏熙. 电池,2005, 35 (1), 27.]

    27. [27]

      (27) Hill, L. I.; Verbaere, A. J. Solid State Chem. 2004, 177, 4706.doi: 10.1016/j.jssc.2004.08.037

    28. [28]

      (28) Zhang, Z. R.; Pinnavaia, T. J. J. Am. Chem. Soc. 2002, 124,12294. doi: 10.1021/ja0208299

    29. [29]

      (29) Parvulescu, V. I.; Bonnemann, H.; Parvulescu, V.; Endruschat,U.; Rufinska, A.; Lehmann, C.W.; Tesche, B.; Poncelet, G. Appl.Catal. A 2001, 214 (2), 273. doi: 10.1016/S0926-860X(01)00503-8

    30. [30]

      (30) Huang, Y.;Wu, J. H.; Huang, M. L.; Lin, J. M.; Huang, Y. F.Scientia Sinica Chimica 2011, 41 (1), 44. [黄毅, 吴季怀,黄妙良, 林建明, 黄昀昉. 中国科学: 化学, 2011, 41 (1), 44.]

    31. [31]

      (31) Wang, Y. Y.; Zhao, C.W.; He, J. S.; Yan, Y.; Zhang, X. L.; Luan,Z. K. Chin. J. Inorg. Chem. 2012, 28 (2), 302. [王园园, 赵长伟, 何劲松, 闫勇, 张香兰, 栾兆坤. 无机化学学报, 2012, 28 (2), 302.]

    32. [32]

      (32) Fu, X. B.; Feng, J. Y.;Wang, H.; Ng, K. M. Mater. Res. Bull.2010, 45, 1218. doi: 10.1016/j.materresbull.2010.05.014

    33. [33]

      (33) Turner, S.; Buseck, P. R. Science 1979, 203, 456. doi: 10.1126/science.203.4379.456

    34. [34]

      (34) Rüetschi, P. J. Electrochem. Soc. 1984, 131 (12), 2737. doi: 10.1149/1.2115399

    35. [35]

      (35) Ling, F.; Deng, L. J.; Chen, P.; Zhou, R. X.; Zheng, X. M.Journal of Zhejiang University (Science Edition) 2011, 38 (1),73. [凌飞, 邓丽杰, 陈平, 周仁贤, 郑小明. 浙江大学学报(理学版), 2011, 38 (1), 73.]

    36. [36]

      (36) Ye, Q.; Huo, F. F.; Yan, L. N.;Wang, J. Cheng, S. Y.; Kang, T. F.Acta Phys. -Chim. Sin. 2011, 27 (12), 2872. [叶青, 霍飞飞, 闫立娜, 王娟, 程水源, 康天放. 物理化学学报, 2011, 27 (12), 2872.] doi: 10.3866/PKU.WHXB20112872


  • 加载中
    1. [1]

      Yukai Jiang Yihan Wang Yunkai Zhang Yunping Wei Ying Ma Na Du . Characterization and Phase Diagram of Surfactant Lyotropic Liquid Crystal. University Chemistry, 2024, 39(4): 114-118. doi: 10.3866/PKU.DXHX202309033

    2. [2]

      Congying Lu Fei Zhong Zhenyu Yuan Shuaibing Li Jiayao Li Jiewen Liu Xianyang Hu Liqun Sun Rui Li Meijuan Hu . Experimental Improvement of Surfactant Interface Chemistry: An Integrated Design for the Fusion of Experiment and Simulation. University Chemistry, 2024, 39(3): 283-293. doi: 10.3866/PKU.DXHX202308097

    3. [3]

      Yongmin Zhang Shuang Guo Mingyue Zhu Menghui Liu Sinong Li . Design and Improvement of Physicochemical Experiments Based on Problem-Oriented Learning: a Case Study of Liquid Surface Tension Measurement. University Chemistry, 2024, 39(2): 21-27. doi: 10.3866/PKU.DXHX202307026

    4. [4]

      Yiqian JiangZihan YangXiuru BiNan YaoPeiqing ZhaoXu Meng . Mediated electron transfer process in α-MnO2 catalyzed Fenton-like reaction for oxytetracycline degradation. Chinese Chemical Letters, 2024, 35(8): 109331-. doi: 10.1016/j.cclet.2023.109331

    5. [5]

      Jie ZHAOSen LIUQikang YINXiaoqing LUZhaojie WANG . Theoretical calculation of selective adsorption and separation of CO2 by alkali metal modified naphthalene/naphthalenediyne. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 515-522. doi: 10.11862/CJIC.20230385

    6. [6]

      Jiahong ZHENGJingyun YANG . Preparation and electrochemical properties of hollow dodecahedral CoNi2S4 supported by MnO2 nanowires. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1881-1891. doi: 10.11862/CJIC.20240170

    7. [7]

      Lumin ZhengYing BaiChuan Wu . Multi-electron reaction and fast Al ion diffusion of δ-MnO2 cathode materials in rechargeable aluminum batteries via first-principle calculations. Chinese Chemical Letters, 2024, 35(4): 108589-. doi: 10.1016/j.cclet.2023.108589

    8. [8]

      Chuanming GUOKaiyang ZHANGYun WURui YAOQiang ZHAOJinping LIGuang LIU . Performance of MnO2-0.39IrOx composite oxides for water oxidation reaction in acidic media. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1135-1142. doi: 10.11862/CJIC.20230459

    9. [9]

      Weihan Zhang Menglu Wang Ankang Jia Wei Deng Shuxing Bai . 表面硫物种对钯-硫纳米片加氢性能的影响. Acta Physico-Chimica Sinica, 2024, 40(11): 2309043-. doi: 10.3866/PKU.WHXB202309043

    10. [10]

      Endong YANGHaoze TIANKe ZHANGYongbing LOU . Efficient oxygen evolution reaction of CuCo2O4/NiFe-layered bimetallic hydroxide core-shell nanoflower sphere arrays. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 930-940. doi: 10.11862/CJIC.20230369

    11. [11]

      Shihui Shi Haoyu Li Shaojie Han Yifan Yao Siqi Liu . Regioselectively Synthesis of Halogenated Arenes via Self-Assembly and Synergistic Catalysis Strategy. University Chemistry, 2024, 39(5): 336-344. doi: 10.3866/PKU.DXHX202312002

    12. [12]

      Yunhao Zhang Yinuo Wang Siran Wang Dazhen Xu . Progress in Selective Construction of Functional Aromatics from Nitrogenous Cycloalkanes. University Chemistry, 2024, 39(11): 136-145. doi: 10.3866/PKU.DXHX202401083

    13. [13]

      Peiran ZHAOYuqian LIUCheng HEChunying DUAN . A functionalized Eu3+ metal-organic framework for selective fluorescent detection of pyrene. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 713-724. doi: 10.11862/CJIC.20230355

    14. [14]

      Xilin Zhao Xingyu Tu Zongxuan Li Rui Dong Bo Jiang Zhiwei Miao . Research Progress in Enantioselective Synthesis of Axial Chiral Compounds. University Chemistry, 2024, 39(11): 158-173. doi: 10.12461/PKU.DXHX202403106

    15. [15]

      Juan Yuan Bin Zhang Jinping Wu Mengfan Wang . Design of a Comprehensive Experiment on Preparation and Characterization of Cu2(Salen)2 Nanomaterials with Two Distinct Morphologies. University Chemistry, 2024, 39(10): 420-425. doi: 10.3866/PKU.DXHX202402014

    16. [16]

      Jiakun BAITing XULu ZHANGJiang PENGYuqiang LIJunhui JIA . A red-emitting fluorescent probe with a large Stokes shift for selective detection of hypochlorous acid. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1095-1104. doi: 10.11862/CJIC.20240002

    17. [17]

      Junjie Zhang Yue Wang Qiuhan Wu Ruquan Shen Han Liu Xinhua Duan . Preparation and Selective Separation of Lightweight Magnetic Molecularly Imprinted Polymers for Trace Tetracycline Detection in Milk. University Chemistry, 2024, 39(5): 251-257. doi: 10.3866/PKU.DXHX202311084

    18. [18]

      Xiaofeng Zhu Bingbing Xiao Jiaxin Su Shuai Wang Qingran Zhang Jun Wang . Transition Metal Oxides/Chalcogenides for Electrochemical Oxygen Reduction into Hydrogen Peroxides. Acta Physico-Chimica Sinica, 2024, 40(12): 2407005-. doi: 10.3866/PKU.WHXB202407005

    19. [19]

      Yinuo Wang Siran Wang Yilong Zhao Dazhen Xu . Selective Synthesis of Diarylmethyl Anilines and Triarylmethanes via Multicomponent Reactions: Introduce a Comprehensive Experiment of Organic Chemistry. University Chemistry, 2024, 39(8): 324-330. doi: 10.3866/PKU.DXHX202401063

    20. [20]

      Hailang JIAHongcheng LIPengcheng JIYang TENGMingyun GUAN . Preparation and performance of N-doped carbon nanotubes composite Co3O4 as oxygen reduction reaction electrocatalysts. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 693-700. doi: 10.11862/CJIC.20230402

Metrics
  • PDF Downloads(857)
  • Abstract views(823)
  • HTML views(2)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return