Citation: ZHAN Wei-Shen, PAN Shi, WANG Qiao, LI Hong, ZHANG Yi. Comparison of D-SS and D-ST Dyes as Photo Sensitizers in Dye-Sensitized Solar Cells[J]. Acta Physico-Chimica Sinica, ;2012, 28(01): 78-84. doi: 10.3866/PKU.WHXB20122878
-
The molecular structures, UV-Vis absorption spectra, and energy level structures of the dyes D-SS and D-ST were simulated using density functional theory, time-dependent density functional theory (TDDFT), and natural bond orbital analysis, which provided the physical mechanisms of dye-sensitized solar cells (DSSCs) containing D-ST and D-SS. The UV-Vis absorption spectrum of D-SS showed a significant red shift compared with that of D-ST and the molar absorption coefficient of D-SS was higher than that of D-ST. D-SS molecules should have a higher solar radiation photon-harvesting ability than D-ST molecules, but the energy level of the highest occupied molecular orbital (HOMO) of D-SS was higher than the redox energy level of the electrolyte (I-/I3-). As a result, an optically excited D-SS molecule cannot be successfully recovered by accepting an electron from the electrolyte after being oxidized by injecting an electron towards the TiO2 electrode. This limits the photon harvesting ability of D-SS molecules, and thereby significantly decreases the photovoltaic properties and energy conversion efficiency of DSSCs containing D-SS. This allows the photovoltaic properties of DSSCs containing D-SS to be understood, especially why its photovoltaic energy conversion efficiency is lower than that of DSSCs containing D-ST. The position of the HOMO energy level of dye-sensitized molecules is very important for the operation of DSSCs, and that of the organic sensitizer molecules used in DSSCs must be lower than the redox energy level of the electrolyte.
-
- [1]
-
[2]
(2) Grätzel, M. J. Photochem. Photobiol. C 2003, 4, 145.
- [3]
-
[4]
(4) Nazeeruddin, M. K.; Klein, C.; Liska, P.; Grätzel, M. Coord. Chem. Rev. 2005, 249, 1460.
- [5]
-
[6]
(6) Peter, L. M. Phys. Chem. Chem. Phys. 2007, 9, 2630.
-
[7]
(7) Wang, Z. S.; Cui, Y.; Dan-oh, Y.; Kasada, C.; Shinpo, A.; Hara, K. J. Phys. Chem. C 2007, 111, 7224.
-
[8]
(8) Chen, R.; Yang, X.; Tian, H.; Sun, L. C. J. Photochem. Photobiol. A-Chem. 2007, 189, 295.
-
[9]
(9) Tian, H.; Yang, X.; Chen, R.; Pan, Y.; Li, L.; Hagfeldt, A.; Sun, L. C. Chem. Commun. 2007, No. 36, 3741.
-
[10]
(10) Kim, S.; Kim, D.; Choi, H.; Kang, M. S.; Song, K.; Kang, S. O.; Ko, J. Chem. Commun. 2008, No. 40, 4951.
-
[11]
(11) Ito, S.; Miura, H.; Uchida, S.; Takata, M.; Sumioka, K.; Liska, P.; Comte, P.; Péchy, P.; Grätzel, M. Chem. Commun. 2008, No. 41, 5194.
-
[12]
(12) Li, C.; Yum, J. H.; Moon, S. J.; Herrmann, A.; Eickemeyer, F.; Pschirer, N. G.; Erk, P.; Schöneboom, J.; Müllen, K.; Grätzel, M.; Nazeeruddin, M. K. ChemSusChem 2008, 1, 615.
-
[13]
(13) Jin, Y.; Hua, J.;Wu,W.; Ma, X.; Meng, F. Synth. Met. 2008, 158, 64.
-
[14]
(14) Burke, A.; Ito, S.; Snaith, H.; Bach, U.; Kwiatkowski, J.; Grätzel, M. Nano Lett. 2008, 8, 977.
-
[15]
(15) Hagberg, D. P.; Marinado, T.; Karlsson, K. M.; Nonomura, K.; Qin, P.; Boschloo, G.; Brinck, T.; Hagfeldt, A.; Sun, L. C. J. Org. Chem. 2007, 72, 9550.
-
[16]
(16) Qin, P.; Yang, X.; Chen, R.; Sun, L. C.; Marinado, T.; Edvinsson, T.; Boschloo, G.; Hagfeldt, A. J. Phys. Chem. C 2007, 111, 1853.
-
[17]
(17) Boschloo, G.; Marinado, T.; Nonomura, K.; Edvinsson, T.; Agrios, A. G.; Hagberg, D. P.; Sun, L. C.; Quintana, M.; Karthikeyan, C. S.; Thelakkat, M.; Hagfeldt, A. Thin Solid Films 2008, 516, 7214.
-
[18]
(18) Yen, Y. S.; Hsu, Y. C.; Lin, J. T.; Chang, C.W.; Hsu, C. P.; Yin, D. J. J. Phys. Chem. C 2008, 112, 12557.
-
[19]
(19) Balanay, M. P.; Kim, D. H. Phys. Chem. Chem. Phys. 2008, 10, 5121.
-
[20]
(20) Ooyama, Y.; Harima, Y. Eur. J. Org. Chem. 2009, No. 18, 2903.
-
[21]
(21) Rochford, J.; Chu, D.; Hagfeldt, A.; Galoppini, E. J. Am. Chem. Soc. 2007, 129, 4655.
-
[22]
(22) Chen, R.; Yang, X.; Tian, H.;Wang, X.; Hagfeldt, A.; Sun, L. C. Chem. Mater. 2007, 19, 4007.
-
[23]
(23) Li, G.; Jiang, K J.; Li, Y. F.; Li, S. L.; Yang, L. M. J. Phys. Chem. C 2008, 112, 11591.
-
[24]
(24) Marinado, T.; Hagberg, D. P.; Hedlund, M.; Edvinsson, T.; Johansson, E. M. J.; Boschloo, G.; Rensmo, H.; Brinck, T.; Sun, L. C.; Hagfeldty, A. Phys. Chem. Chem. Phys. 2009, 11, 133.
-
[25]
(25) Chen, Z.; Li, F.; Huang, C. H. Curr. Org. Chem. 2007, 11, 1241.
-
[26]
(26) Tsai, M. S.; Hsu, Y. C.; Lin, J. T.; Chen, H. C.; Hsu, C. P. J. Phys. Chem. C 2007, 111, 18785.
-
[27]
(27) Choi, H.; Lee, J. K.; Song, K. H.; Song, K.; Kang, S. O.; Ko, J. Tetrahedron 2007, 63, 1553.
-
[28]
(28) Zhao, G. J.; Chen, R. K.; Sun, M. T.; Liu, J. Y.; Li, G. Y.; Gao, Y. L.; Han, K. L.; Yang, X. C.; Sun, L. C. Chem. Eur. J. 2008, 14, 6935.
-
[29]
(29) Zhao, G. J.; Liu, J. Y.; Zhou, L. C.; Han, K. L. J. Phys. Chem. B 2007, 111, 8940.
- [30]
-
[31]
(31) Kurashige, Y.; Nakajima, T.; Kurashige, S.; Hirao, K.; Nishikitani, Y. J. Phys. Chem. A 2007, 111, 5544.
-
[32]
(32) Zhang, X.; Zhang, J. J.; Xia, Y. Y. J. Photochem. Photobiol. A-Chem. 2008, 194, 167.
-
[33]
(33) Li, S. L.; Jiang, K. J.; Shao, K. F.; Yang, L. M. Chem. Commun. 2006, No. 26, 2792.
-
[34]
(34) Sayama, K. Tsuka shi, S.; Mori, T.; Hara, K.; Ohga, Y.; Shinpo, A.; Abe, Y.; Suga, S.; Arakawa, H. Sol. Energy Mater. Sol. Cells 2003, 80, 47.
-
[35]
(35) De Angelis, F.; Fantacci, S.; Selloni, A.; Nazeeruddin, M. K. Chem. Phys. Lett. 2005, 415, 115.
-
[36]
(36) Xu, Y.; Chen,W. K.; Cao, M. J.; Liu, S. H.; Li, J. Q.; Philippopoulos, A. I.; Falaras, P. Chem. Phys. 2006, 330, 204.
-
[37]
(37) Sun, J.; Song, J.; Zhao, Y.; Liang,W. Z. J. Chem. Phys. 2007, 127, 234107.
-
[38]
(38) Wang, Y. L.;Wu, G. S. Acta Phys. -Chim. Sin. 2008, 24, 552. [王溢磊, 吴国是. 物理化学学报, 2008, 24, 552.]
-
[39]
(39) Li, H. X.; Pan, S. J.;Wang, X. F.; Xiao, T. Chin. J. Chem. Phys. 2008, 21, 263.
-
[40]
(40) Zhang, C. R.;Wu, Y. Z.; Chen, Y. H.; Chen, H. S. Acta Phys. -Chim. Sin. 2009, 25, 53. [张材荣, 吴有智, 陈玉红, 陈宏善. 物理化学学报, 2009, 25, 53.]
-
[41]
(41) Zhan,W. S.; Pan, S.; Li, Y. Z.; Chen, M. D. Acta Phys. -Chim. Sin. 2009, 25, 2087. [詹卫伸, 潘石, 李源作, 陈茂笃. 物理化学学报, 2009, 25, 2087.]
-
[42]
(42) Sobolewski, A. L.; Domcke,W. J. Phys. Chem. A 1999, 103, 4494.
-
[43]
(43) Sobolewski, A. L.; Domcke,W. J. Phys. Chem. A 2004, 108, 10917.
-
[44]
(44) Sobolewski, A. L.; Domcke,W.; Hättig, C. J. Phys. Chem. A 2006, 110, 6301.
-
[45]
(45) Zhao, G. J.; Han, K. L. J. Phys. Chem. A 2007, 111, 2469.
-
[46]
(46) Zhao, G. J.; Han, K. L. J. Phys. Chem. A 2007, 111, 9218.
-
[47]
(47) Wang, Y. L.;Wu, G. S. Acta Phys. -Chim. Sin. 2007, 23, 1831. [王溢磊, 吴国是. 物理化学学报, 2007, 23, 1831.]
-
[48]
(48) Zhang, C. R.; Liu, Z. J.; Chen, Y. H.; Chen, H. S.;Wu, Y. Z.; Yuan, L. H. J. Mol. Struct.-Theochem 2009, 899, 86.
-
[49]
(49) Zhan,W. S.; Pan, S.; Li, Y. Z.; Chen, M. D. Acta Phys. -Chim. Sin. 2010, 26, 1408. [詹卫伸, 潘石, 李源作, 陈茂笃. 物理化学学报, 2010, 26, 1408.]
-
[50]
(50) Frisch, M. J.; Trucks, G.W.; Schlegel, H. B.; et al. Gaussian 03, Revision C.02; Gaussian Inc.: Pittsburgh, PA, 2003.
- [51]
- [52]
-
[53]
(53) Stephens, P. J.; Devlin, F. J.; Chabalowski, C. F.; Frisch, M. J. J. Phys. Chem. 1994, 98, 11623.
-
[54]
(54) Bene, J. E. D.; Person,W. B.; Szczepaniak, K. J. Phys. Chem. 1995, 99, 10705.
-
[55]
(55) Hertwig, R. H.; Koch,W. Chem. Phys. Lett. 1997, 268, 345.
-
[56]
(56) Tozer, D. J.; Handy, N. C. J. Chem. Phys. 1998, 109, 10180.
-
[57]
(57) Yanai, T.; Tew, D. P.; Handy, N. C. Chem. Phys. Lett. 2004, 393, 51.
-
[58]
(58) Barone, V.; Cossi, M. J. Phys. Chem. A 1998, 102, 1995.
- [59]
- [60]
-
[61]
(61) Reed, A. E.;Weinstock, R. B.;Weinhold, F. J. Chem. Phys. 1985, 83, 735.
-
[62]
(62) Cossi, M.; Barone, V.; Cammi, R.; Tomasi, J. Chem. Phys. Lett. 1996, 255, 327.
-
[63]
(63) Foresman, J. B.; Keith, T. A.;Wiberg, K. B.; Snoonian, J.; Frisch, M. J. J. Phys. Chem. 1996, 100, 16098.
-
[64]
(64) Cossi, M.; Barone, V.; Mennucci, B.; Tomasi, J. Chem. Phys. Lett. 1998, 286, 253.
-
[65]
(65) Klamt, A.; Jonas, V.; Bürger, T.; Lohrenz, J. C.W. J. Phys. Chem. A 1998, 102, 5074.
-
[66]
(66) Cossi, M.; Rega, N.; Scalmani, G.; Barone, V. J. Comput. Chem. 2003, 24, 669.
-
-
[1]
Zhenming Xu , Mingbo Zheng , Zhenhui Liu , Duo Chen , Qingsheng Liu . Experimental Design of Project-Driven Teaching in Computational Materials Science: First-Principles Calculations of the LiFePO4 Cathode Material for Lithium-Ion Batteries. University Chemistry, 2024, 39(4): 140-148. doi: 10.3866/PKU.DXHX202307022
-
[2]
Feng Zheng , Ruxun Yuan , Xiaogang Wang . “Research-Oriented” Comprehensive Experimental Design in Polymer Chemistry: the Case of Polyimide Aerogels. University Chemistry, 2024, 39(10): 210-218. doi: 10.12461/PKU.DXHX202404027
-
[3]
Jizhou Liu , Chenbin Ai , Chenrui Hu , Bei Cheng , Jianjun Zhang . 六氯锡酸铵促进钙钛矿太阳能电池界面电子转移及其飞秒瞬态吸收光谱研究. Acta Physico-Chimica Sinica, 2024, 40(11): 2402006-. doi: 10.3866/PKU.WHXB202402006
-
[4]
Jie ZHAO , Sen LIU , Qikang YIN , Xiaoqing LU , Zhaojie WANG . Theoretical calculation of selective adsorption and separation of CO2 by alkali metal modified naphthalene/naphthalenediyne. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 515-522. doi: 10.11862/CJIC.20230385
-
[5]
Xiaochen Zhang , Fei Yu , Jie Ma . 多角度数理模拟在电容去离子中的前沿应用. Acta Physico-Chimica Sinica, 2024, 40(11): 2311026-. doi: 10.3866/PKU.WHXB202311026
-
[6]
Xuyang Wang , Jiapei Zhang , Lirui Zhao , Xiaowen Xu , Guizheng Zou , Bin Zhang . Theoretical Study on the Structure and Stability of Copper-Ammonia Coordination Ions. University Chemistry, 2024, 39(3): 384-389. doi: 10.3866/PKU.DXHX202309065
-
[7]
Wenyan Dan , Weijie Li , Xiaogang Wang . The Technical Analysis of Visual Software ShelXle for Refinement of Small Molecular Crystal Structure. University Chemistry, 2024, 39(3): 63-69. doi: 10.3866/PKU.DXHX202302060
-
[8]
Mengyao Shi , Kangle Su , Qingming Lu , Bin Zhang , Xiaowen Xu . Determination of Potassium Content in Tobacco Stem Ash by Flame Atomic Absorption Spectroscopy. University Chemistry, 2024, 39(10): 255-260. doi: 10.12461/PKU.DXHX202404105
-
[9]
Yipeng Zhou , Chenxin Ran , Zhongbin Wu . Metacognitive Enhancement in Diversifying Ideological and Political Education within Graduate Course: A Case Study on “Solar Cell Performance Enhancement Technology”. University Chemistry, 2024, 39(6): 151-159. doi: 10.3866/PKU.DXHX202312096
-
[10]
Yixuan Gao , Lingxing Zan , Wenlin Zhang , Qingbo Wei . Comprehensive Innovation Experiment: Preparation and Characterization of Carbon-based Perovskite Solar Cells. University Chemistry, 2024, 39(4): 178-183. doi: 10.3866/PKU.DXHX202311091
-
[11]
Maitri Bhattacharjee , Rekha Boruah Smriti , R. N. Dutta Purkayastha , Waldemar Maniukiewicz , Shubhamoy Chowdhury , Debasish Maiti , Tamanna Akhtar . Synthesis, structural characterization, bio-activity, and density functional theory calculation on Cu(Ⅱ) complexes with hydrazone-based Schiff base ligands. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1409-1422. doi: 10.11862/CJIC.20240007
-
[12]
Zeyuan WANG , Songzhi ZHENG , Hao LI , Jingbo WENG , Wei WANG , Yang WANG , Weihai SUN . Effect of I2 interface modification engineering on the performance of all-inorganic CsPbBr3 perovskite solar cells. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1290-1300. doi: 10.11862/CJIC.20240021
-
[13]
Yonghui ZHOU , Rujun HUANG , Dongchao YAO , Aiwei ZHANG , Yuhang SUN , Zhujun CHEN , Baisong ZHU , Youxuan ZHENG . Synthesis and photoelectric properties of fluorescence materials with electron donor-acceptor structures based on quinoxaline and pyridinopyrazine, carbazole, and diphenylamine derivatives. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 701-712. doi: 10.11862/CJIC.20230373
-
[14]
Jia Yao , Xiaogang Peng . Theory of Macroscopic Molecular Systems: Theoretical Framework of the Physical Chemistry Course in the Chemistry “101 Plan”. University Chemistry, 2024, 39(10): 27-37. doi: 10.12461/PKU.DXHX202408117
-
[15]
Yanxin Wang , Hongjuan Wang , Yuren Shi , Yunxia Yang . Application of Python for Visualizing in Structural Chemistry Teaching. University Chemistry, 2024, 39(3): 108-117. doi: 10.3866/PKU.DXHX202306005
-
[16]
Liang MA , Honghua ZHANG , Weilu ZHENG , Aoqi YOU , Zhiyong OUYANG , Junjiang CAO . Construction of highly ordered ZIF-8/Au nanocomposite structure arrays and application of surface-enhanced Raman spectroscopy. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1743-1754. doi: 10.11862/CJIC.20240075
-
[17]
Wenliang Wang , Weina Wang , Sufan Wang , Tian Sheng , Tao Zhou , Nan Wei . “Schrödinger Equation – Approximate Models – Core Concepts – Simple Applications”: Constructing a Logical Framework and Knowledge Graph of Atom and Molecule Structures. University Chemistry, 2024, 39(8): 338-343. doi: 10.3866/PKU.DXHX202312084
-
[18]
Qi Li , Pingan Li , Zetong Liu , Jiahui Zhang , Hao Zhang , Weilai Yu , Xianluo Hu . Fabricating Micro/Nanostructured Separators and Electrode Materials by Coaxial Electrospinning for Lithium-Ion Batteries: From Fundamentals to Applications. Acta Physico-Chimica Sinica, 2024, 40(10): 2311030-. doi: 10.3866/PKU.WHXB202311030
-
[19]
Yuqiao Zhou , Weidi Cao , Shunxi Dong , Lili Lin , Xiaohua Liu . Study on the Teaching Reformation of Practical X-ray Crystallography. University Chemistry, 2024, 39(3): 23-28. doi: 10.3866/PKU.DXHX202303003
-
[20]
Xinting XIONG , Zhiqiang XIONG , Panlei XIAO , Xuliang NIE , Xiuying SONG , Xiuguang YI . Synthesis, crystal structures, Hirshfeld surface analysis, and antifungal activity of two complexes Na(Ⅰ)/Cd(Ⅱ) assembled by 5-bromo-2-hydroxybenzoic acid ligands. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1661-1670. doi: 10.11862/CJIC.20240145
-
[1]
Metrics
- PDF Downloads(1028)
- Abstract views(3326)
- HTML views(5)