Citation: XU Zong-Ping, ZHAO Yan-Ying, WANG Hui-Gang, ZHENG Xu-Ming. Resonance Raman Spectroscopy and Density Functional Theory Investigations on the Excited State Structural Dynamics of N-Methylpyrrole-2-carboxaldehyde and Its Solvent Effect[J]. Acta Physico-Chimica Sinica, ;2012, 28(01): 65-72. doi: 10.3866/PKU.WHXB20122865
-
Resonance Raman spectra of N-Methylpyrrole-2-carboxaldehyde (NMPCA) were obtained and seven excitations covered the A- and B-band electronic absorptions. The electronic excitations and the Franck-Condon region structural dynamics of NMPCA were studied by resonance Raman spectroscopy and time-dependent density functional theory (TD-DFT) calculations. The A- and B-band electronic absorptions were assigned to π →π* transitions on the basis of the TD-B3LYP/6-311 ++ G(d,p) level of theory. The resonance Raman spectra showed Raman intensity in the fundamentals, the overtones and the combination bands for about 11-13 vibrational modes (A-band excitation) or 7-11 vibrational modes (B-band excitation). These were predominately due to the C=O stretch mode ν7, the ring deformation+N1- C6 stretch ν17, the ring deformation mode ν21 and the C6-N1-C2/C2-C3-C4 anti-symmetry stretch mode ν14. This indicates that the Franck-Condon region Sπ structural dynamics of NMPCA mainly occurs along the C=O stretch, the ring deformation, and the N1-C6 stretch reaction coordinates. In a certain solvent and under different excitation wavelengths the relative intensity of the C=O stretch mode ν7 versus the C6-N1-C2/C2-C3 -C4 anti-symmetry stretch mode ν14 shows an intense to weak to intense change as the excitation wavelengths decrease. This intensity variation directly reflects the Sn/Sπ state-mixing or crossing of the potential energy surfaces in the Franck-Condon region. Solvents can efficiently tune the Franck- Condon region Sn/Sπ state-mixing or crossing processes.
-
- [1]
-
[2]
(2) Gilbert, A.; Bag tt, J. Essentials of Molecular Photochemistry; CRC Press: Boca Raton, FL, 1991.
-
[3]
(3) Horspool,W.; Armesto D. Organic Photochemistry-A Comprehensive Treatment; Ellis Horwood: New York, 1992.
-
[4]
(4) Smolarek, J.; Zwarich, R.; odman, L. J. Mol. Spectrosc. 1972, 43, 416.
-
[5]
(5) Abe, H.; Kamei, S.; Mikami, N.; Ito M. Chem. Phys. Lett. 1984, 109, 217.
-
[6]
(6) Ohmori, N.; Suzuki, T.; Ito, M. J. Phys. Chem. 1988, 92, 1086.
-
[7]
(7) Robin, M. B.; Kuebler, N. A. J. Am. Chem. Soc. 1975, 97, 4822.
- [8]
-
[9]
(9) Zhao, H. Q.; Cheung, Y. S.; Liao, C. L.; Liao, C. X.; Ng, C. Y.; Li,W. K. J. Chem. Phys. 1997, 107, 7230.
-
[10]
(10) Anand, S.; Zamari, M. M.; Menkir, G.; Levis, R. J.; Schlegel, H. B. J. Phys. Chem. A 2004, 108, 3162.
- [11]
-
[12]
(12) Hirata, Y.; Lim, E. C. Chem. Phys. Lett. 1980, 71, 167.
-
[13]
(13) Koyanagi, M.; odman, L.; Chem. Phys. 1979, 39, 237.
- [14]
-
[15]
(15) Koyanagi, M.; Zwarich, R. J.; odman, L. J. Chem. Phys. 1972, 56, 3044.
-
[16]
(16) Kiritani, M.; Yoshii, T.; Hirota, N.; Baba, M.; J. Phys. Chem. 1994, 98, 11265.
-
[17]
(17) Villa, E.; Amirav, A.; Chen,W.; Lim, E. C. Chem. Phys. Lett. 1988, 147, 43.
-
[18]
(18) Sneh, O.; Cheshnovsky, O. J. Phys. Chem. 1991, 95, 7154.
-
[19]
(19) Fang,W. H.; Phillips, D. L. ChemPhysChem 2002, 3, 889.
-
[20]
(20) Wang, Y.W.; He, H. Y.; Fang,W. H. J. Mol. Struct.- Theochem 2003, 634, 281.
-
[21]
(21) Ding,W. J.; Fang,W. H. Progress in Chemistry 2007, 19, 1449. [丁万见, 方维海. 化学进展, 2007, 19, 1449.]
-
[22]
(22) Srinivasan, R.; Feenstra, J. S.; Park, S. T.; Xu, S. J.; Zewail, A. H. Science 2005, 307, 558.
-
[23]
(23) Feenstra, J. S.; Park, S. T.; Zewail, A. H. J. Chem. Phys. 2005, 123, 221104.
-
[24]
(24) Park, S. T.; Feenstra, J. S.; Zewail, A. H. J. Chem. Phys. 2006, 124, 174707.
-
[25]
(25) Ma, Y.; Pei, K.; Zheng, X.; Li H. Chem. Phys. Lett. 2007, 449, 107.
-
[26]
(26) Li, S. P.;Wu, G. M.; Zheng, X. M. Chem. J. Chin. Univ. 2004, 25, 1495. [李少鹏, 吴光明, 郑旭明. 高等学校化学学报, 2004, 25, 1495.]
-
[27]
(27) Myer, A. B.; Li, B.; Ci, X. J. Chem. Phys. 1988, 89, 1876.
-
[28]
(28) Frisch, M. J.; Trucks, G.W.; Schlegel, H. B.; et al . Gaussian 03, Revision B.02; Gaussian Inc.: Pittsburgh, PA, 2003.
- [29]
- [30]
-
[31]
(31) Galica, G. E.; Johnson, B. R.; Kinsey, J. L.; Hale, M. O. J. Phys. Chem. 1991, 95, 7994.
- [32]
-
[33]
(33) Phillips, D. L.; Myers, A. B. J. Chem. Phys. 1991, 95, 226.
-
[34]
(34) Kwok,W. M.; Phillips, D. L. J. Chem. Phys. 1996, 104, 9816.
-
[35]
(35) Zheng, X.; Phillips, D. L. Chem. Phys. Lett. 1998, 286, 79.
-
[36]
(36) Santoro, F.; Barone, V.; Gustavsson, T.; Improta, R. J. Am. Chem. Soc. 2006, 128, 16312.
-
-
[1]
Yan Li , Xinze Wang , Xue Yao , Shouyun Yu . Kinetic Resolution Enabled by Photoexcited Chiral Copper Complex-Mediated Alkene E→Z Isomerization: A Comprehensive Chemistry Experiment for Undergraduate Students. University Chemistry, 2024, 39(5): 1-10. doi: 10.3866/PKU.DXHX202309053
-
[2]
Liang MA , Honghua ZHANG , Weilu ZHENG , Aoqi YOU , Zhiyong OUYANG , Junjiang CAO . Construction of highly ordered ZIF-8/Au nanocomposite structure arrays and application of surface-enhanced Raman spectroscopy. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1743-1754. doi: 10.11862/CJIC.20240075
-
[3]
Yaling Chen . Basic Theory and Competitive Exam Analysis of Dynamic Isotope Effect. University Chemistry, 2024, 39(8): 403-410. doi: 10.3866/PKU.DXHX202311093
-
[4]
Zhuomin Zhang , Hanbing Huang , Liangqiu Lin , Jingsong Liu , Gongke Li . Course Construction of Instrumental Analysis Experiment: Surface-Enhanced Raman Spectroscopy for Rapid Detection of Edible Pigments. University Chemistry, 2024, 39(2): 133-139. doi: 10.3866/PKU.DXHX202308034
-
[5]
Jingyi Chen , Fu Liu , Tiejun Zhu , Kui Cheng . Practice of Integrating Ideological and Political Education into Raman Spectroscopy Analysis Experiment Course. University Chemistry, 2024, 39(2): 140-146. doi: 10.3866/PKU.DXHX202310111
-
[6]
Wei Peng , Baoying Wen , Huamin Li , Yiru Wang , Jianfeng Li . Exploration and Practice on Raman Scattering Spectroscopy Experimental Teaching. University Chemistry, 2024, 39(8): 230-240. doi: 10.3866/PKU.DXHX202312062
-
[7]
Zhaoyue Lü , Zhehao Chen , Yi Ni , Duanbin Luo , Xianfeng Hong . Multi-Level Teaching Design and Practice Exploration of Raman Spectroscopy Experiment. University Chemistry, 2024, 39(11): 304-312. doi: 10.12461/PKU.DXHX202402047
-
[8]
Kexin Dong , Chuqi Shen , Ruyu Yan , Yanping Liu , Chunqiang Zhuang , Shijie Li . Integration of Plasmonic Effect and S-Scheme Heterojunction into Ag/Ag3PO4/C3N5 Photocatalyst for Boosted Photocatalytic Levofloxacin Degradation. Acta Physico-Chimica Sinica, 2024, 40(10): 2310013-. doi: 10.3866/PKU.WHXB202310013
-
[9]
You Wu , Chang Cheng , Kezhen Qi , Bei Cheng , Jianjun Zhang , Jiaguo Yu , Liuyang Zhang . ZnO/D-A共轭聚合物S型异质结高效光催化产H2O2及其电荷转移动力学研究. Acta Physico-Chimica Sinica, 2024, 40(11): 2406027-. doi: 10.3866/PKU.WHXB202406027
-
[10]
Shule Liu . Application of SPC/E Water Model in Molecular Dynamics Teaching Experiments. University Chemistry, 2024, 39(4): 338-342. doi: 10.3866/PKU.DXHX202310029
-
[11]
Jinfu Ma , Hui Lu , Jiandong Wu , Zhongli Zou . Teaching Design of Electrochemical Principles Course Based on “Cognitive Laws”: Kinetics of Electron Transfer Steps. University Chemistry, 2024, 39(3): 174-177. doi: 10.3866/PKU.DXHX202309052
-
[12]
Yeyun Zhang , Ling Fan , Yanmei Wang , Zhenfeng Shang . Development and Application of Kinetic Reaction Flasks in Physical Chemistry Experimental Teaching. University Chemistry, 2024, 39(4): 100-106. doi: 10.3866/PKU.DXHX202308044
-
[13]
Xuzhen Wang , Xinkui Wang , Dongxu Tian , Wei Liu . Enhancing the Comprehensive Quality and Innovation Abilities of Graduate Students through a “Student-Centered, Dual Integration and Dual Drive” Teaching Model: A Case Study in the Course of Chemical Reaction Kinetics. University Chemistry, 2024, 39(6): 160-165. doi: 10.3866/PKU.DXHX202401074
-
[14]
Dexin Tan , Limin Liang , Baoyi Lv , Huiwen Guan , Haicheng Chen , Yanli Wang . Exploring Reverse Teaching Practices in Physical Chemistry Experiment Courses: A Case Study on Chemical Reaction Kinetics. University Chemistry, 2024, 39(11): 79-86. doi: 10.12461/PKU.DXHX202403048
-
[15]
Yiying Yang , Dongju Zhang . Elucidating the Concepts of Thermodynamic Control and Kinetic Control in Chemical Reactions through Theoretical Chemistry Calculations: A Computational Chemistry Experiment on the Diels-Alder Reaction. University Chemistry, 2024, 39(3): 327-335. doi: 10.3866/PKU.DXHX202309074
-
[16]
Yue Wu , Jun Li , Bo Zhang , Yan Yang , Haibo Li , Xian-Xi Zhang . Research on Kinetic and Thermodynamic Transformations of Organic-Inorganic Hybrid Materials for Fluorescent Anti-Counterfeiting Application information: Introducing a Comprehensive Chemistry Experiment. University Chemistry, 2024, 39(6): 390-399. doi: 10.3866/PKU.DXHX202403028
-
[17]
Cheng PENG , Jianwei WEI , Yating CHEN , Nan HU , Hui ZENG . First principles investigation about interference effects of electronic and optical properties of inorganic and lead-free perovskite Cs3Bi2X9 (X=Cl, Br, I). Chinese Journal of Inorganic Chemistry, 2024, 40(3): 555-560. doi: 10.11862/CJIC.20230282
-
[18]
Zhaoyang WANG , Chun YANG , Yaoyao Song , Na HAN , Xiaomeng LIU , Qinglun WANG . Lanthanide(Ⅲ) complexes derived from 4′-(2-pyridyl)-2, 2′∶6′, 2″-terpyridine: Crystal structures, fluorescent and magnetic properties. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1442-1451. doi: 10.11862/CJIC.20240114
-
[19]
Min WANG , Dehua XIN , Yaning SHI , Wenyao ZHU , Yuanqun ZHANG , Wei ZHANG . Construction and full-spectrum catalytic performance of multilevel Ag/Bi/nitrogen vacancy g-C3N4/Ti3C2Tx Schottky junction. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1123-1134. doi: 10.11862/CJIC.20230477
-
[20]
Qiuyang LUO , Xiaoning TANG , Shu XIA , Junnan LIU , Xingfu YANG , Jie LEI . Application of a densely hydrophobic copper metal layer in-situ prepared with organic solvents for protecting zinc anodes. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1243-1253. doi: 10.11862/CJIC.20240110
-
[1]
Metrics
- PDF Downloads(822)
- Abstract views(2379)
- HTML views(13)