Citation: DONG Hua-Qing, PAN Xi, XIE Qin, MENG Qiang-Qiang, GAO Jian-Rong, WANG Jian-Guo. CO Adsorption and Oxidation on Metal-Doped TiO2 Nanotube Arrays[J]. Acta Physico-Chimica Sinica, ;2012, 28(01): 44-50. doi: 10.3866/PKU.WHXB20122844 shu

CO Adsorption and Oxidation on Metal-Doped TiO2 Nanotube Arrays

  • Received Date: 6 September 2011
    Available Online: 28 October 2011

    Fund Project: 国家自然科学基金(20906081) (20906081)浙江省自然科学基金(R4110345)资助项目 (R4110345)

  • Density functional theory (DFT) calculations were used to investigate the structural and electronic properties of V-, Cr-, Pd-, Pt-, and Au-doped titania nanotube arrays (TNTAs) where Ti was replaced by dopants. The adsorption of CO and the formation of CO2 on these various nanotube arrays were also studied in detail. We found that CO physisorbed weakly inside the TNTAs and CO was oxidized by lattice oxygen to form CO2 by the redox mechanism. This may thus be attributed to the unique confinement effect and to different metal doping. All the metal doped systems except the Cr-TNTAs showed a lower activation energy barrier than the undoped TNTAs, indicating that proper metal dopants can promote CO oxidation. The reaction on the Pd- or Au-doped TNTAs had the lowest barrier. Therefore, we found that Pd- or Au-doped TNTAs led to enhanced catalytic activity for CO oxidation at low temperatures.
  • 加载中
    1. [1]

      (1) Hoffman, M. R.; Martin, S. T.; Choi,W.; Bahnemann, D.W.Chem. Rev. 1995, 95 (1), 69.

    2. [2]

      (2) Tachikawa, T.; Tojo, S.; Fujitsuka, M.; Majima,T. J. Phys. Chem. B 2004, 108, 11054.  

    3. [3]

      (3) Macak, J. M.; Tsuchiya, H.; Schmuki, P. Angew. Chem. Int. Edit.2005, 44, 2100.  

    4. [4]

      (4) Ivanovskaya, V. V.; Enyashin, A. N.; Ivanovskii, A. L.Mendeleev Commun. 2003, 13 (1), 5.

    5. [5]

      (5) Grätzel, M. Nature 2001, 414, 338.  

    6. [6]

      (6) Zhu, K.; Neale, N. R.; Miedaner, A.; Frank, A. J. Nano Lett.2007, 7 (1), 69.

    7. [7]

      (7) Varghese, O. K.; ng, D.; Paulose, M.; Ong, K. G.; Dickey, E.C.; Grimes, C. A. Adv. Mater. 2003, 15, 624.  

    8. [8]

      (8) Fujishima, A.; Honda, K. Nature 1972, 238, 37.  

    9. [9]

      (9) Rivera A. P.; Tanaka K.; Hisanaga T. Appl. Catal. B 1993, 3 (1),37.

    10. [10]

      (10) ng, D.; Grimes, C. A.; Varghese, O. K.; Hu,W. C.; Singh, R.S.; Chen, Z.; Dickey, E. C. J. Mater. Res. 2001, 16, 3331.  

    11. [11]

      (11) Chien, S. H.; Liou, Y. C.; Kuo, M. C. Synth. Met. 2005, 152, 333.  

    12. [12]

      (12) Idakiev, V.; Yuan, Z. Y.; Tabakova, T.; Su, B. L. Appl. Catal. A2005, 281, 149.  

    13. [13]

      (13) Bavykin, D. V.; Lapkin, A. A.; Plucinski, P. K.; Friedrich, J. M.;Walsh, F. C. J. Catal. 2005, 235, 10.  

    14. [14]

      (14) Tsai, C. C.; Teng, H. Chem. Mater. 2004, 16, 4352.  

    15. [15]

      (15) Zhu, B.; Guo, Q.; Huang, X.;Wang, S.; Zhang, S.;Wu, S.;Huang,W. J. Mol. Catal. A 2006, 249, 211.  

    16. [16]

      (16) Enyashin, A. N.; Seifert, G. Phys. Stat. Sol. B 2005, 242, 1361.  

    17. [17]

      (17) Akpan, U. G.; Hameed, B. H. Appl. Catal. A 2010, 375 (1), 1.

    18. [18]

      (18) Ishitani, O.; Inoue, C.; Suzuki, Y.; Ibusuki, T. J. Photochem. Photobiol. A- Chem. 1993, 72, 269.  

    19. [19]

      (19) Linsebigler, A. L.; Lu, G.; Yates, J. T., Jr. Chem. Rev. 1995, 95,735.  

    20. [20]

      (20) Murruni, L.; Leyva, G.; Litter, M. I. Catal. Today 2007, 129,127.  

    21. [21]

      (21) Min, B. K.; Friend, C. M. Chem. Rev. 2007, 107, 2709.  

    22. [22]

      (22) Campbell, C. T. Science 2004, 306, 234.  

    23. [23]

      (23) Corti, C.W.; Holliday, R. J.; Thompson, D. T. Appl. Catal. A2005, 291, 253.  

    24. [24]

      (24) Haruta, M.; Yamada, N.; Kobayashi, T.; Iijima, S. J. Catal.1989, 115, 301.  

    25. [25]

      (25) An,W.; Pei, Y.; Zeng, X. C. Nano Lett. 2008, 8 (1), 195.

    26. [26]

      (26) Einaga, H.; Harada, M.; Futamura, S.; Ibusuki, T. J. Phys. Chem. B 2003, 107, 9290.  

    27. [27]

      (27) Vorontsov, A. V.; Savinov, E. N.; Barannik, G. B.; Troitsky, V.N.; Parmon, V. N. Catal. Today 1997, 39, 207.  

    28. [28]

      (28) Zhang, M.; Jin, Z. S.;Wang, S. B.; Zhang, S. L.; Zhang, Z. J.Acta Phys. -Chim. Sin. 2003, 19, 100.

    29. [29]

      (29) Valden, M.; Lai, X.; odman, D.W. Science 1998, 281, 1647.  

    30. [30]

      (30) Boccuzzi, F.; Chiorino, A.; Manzoli, M.; Lu, P.; Akita, T.;Ichikawa, S.; Haruta, M. J. Catal. 2001, 202, 256.  

    31. [31]

      (31) Chen, M. S.; odman, D.W. Science 2004, 306, 252.  

    32. [32]

      (32) Chen, M.; Cai, Y.; Yan, Z.; odman, D.W. J. Am. Chem. Soc.2006, 128, 6341.  

    33. [33]

      (33) Vesborg, P. C. K.; In S. I.; Olsen, J. L.; Henriksen, T. R.;Abrams, B. L.; Hou, Y.; Kleiman-Shwarsctein, A.; Hansen, O.;Chorkendorff, I. J. Phys. Chem. C 2010, 114, 11162.

    34. [34]

      (34) Liu, Y. L.; You, C. R.; Li, Y.; He, T.; Zhang, X. Q.; Suo Z. H.Acta Phys. -Chim. Sin. 2010, 26, 2455. [刘玉良, 由翠荣, 李杨, 何涛, 张香芹, 索掌怀. 物理化学学报, 2010, 26, 2455.]

    35. [35]

      (35) Yu, J.;Wu, G. S.; Mao, D. S.; Lu, G. Z. Acta Phys. -Chim. Sin.2008, 24, 1751. [俞俊,吴贵升,毛东森,卢冠忠.物理化学学报, 2008, 24, 1751.]  

    36. [36]

      (36) Ntho, T. A.; Anderson, J. A.; Scurrell, M. S. J. Catal. 2009, 261,94.

    37. [37]

      (37) Akita, T.; Okumura, M.; Tanaka, K.; Ohkuma, K.; Kohyama,M.; Koyanagi, T.; Date, M.; Tsubota, S.; Haruta, M. Surf. Interface Anal. 2005, 37, 265.  

    38. [38]

      (38) Meng, Q. Q.;Wang, J. G.; Xie, Q.; Li, X. N. J. Phys. Chem. C2010, 114, 9251.

    39. [39]

      (39) Meng, Q. Q.;Wang, J. G.; Xie, Q.; Dong, H. Q.; Li, X. N. Catal.Today 2011, 165, 145.

    40. [40]

      (40) Su, Y.; Meng, Q. Q.;Wang, J. G. J. Phys. Chem. C 2009, 113,21338.

    41. [41]

      (41) Delley, B. J. Chem. Phys. 1990, 92 (1), 508.

    42. [42]

      (42) Delley, B. J. Chem. Phys. 2000, 113, 7756.  

    43. [43]

      (43) Perfew, J. P.;Wang, Y. Phys . Rev. B. 1992, 45, 13244.  

    44. [44]

      (44) Yang, K. S.; Dai, Y.; Huang, B. B.; Whangbo, M. H. Chem. Mater. 2008, 20, 6528.  

    45. [45]

      (45) Le, L. C.; Ma, X. G.; Tang, H.;Wang, Y.; Li, X.; Jiang, J. J. Acta Phys. Sin. 2010, 59, 1314. [乐伶聪, 马新国, 唐豪, 王扬,李翔, 江建军. 物理学报, 2010, 59, 1314.]

    46. [46]

      (46) Yao, Y. B.; Xie, T.; Gao, Y. M. Handbook of Physical Chemistry; Shanghai Science and Technology Press: Shanghai,1985; pp 99-104. [姚允斌, 解涛, 高英敏. 物理化学手册.上海: 上海科学技术出版社, 1985: 99-104.]

    47. [47]

      (47) Xu, L.; Tang, C. Q.; Huang, Z. B. Acta Phys. -Chim. Sin. 2010,26, 1401. [徐凌, 唐超群, 黄宗斌. 物理化学学报, 2010,26, 1401.]

    48. [48]

      (48) Ghicov, A.; Schmidt, B.; Kunze, J.; Schmuki, P. Chem. Phys. Lett. 2007, 433, 323.

    49. [49]

      (49) Yang, K.; Dai, Y.; Huang, B. ChemPhysChem 2009, 10, 2327.  

    50. [50]

      (50) Lide, D. R. CRC Handbook of Chemistry and Physics, 76th ed.;CRC Press: New York, 1996.

    51. [51]

      (51) Pala, R. G. S.; Metiu, H. J. Phys. Chem. C 2007, 111, 8617.  

    52. [52]

      (52) Mars, P.; van Krevelen, P.W. Chem. Eng. Sci. 1954, 3, 41.  

    53. [53]

      (53) Chretien, S.; Metiu, H. Catal. Lett. 2006, 107, 143.  

    54. [54]

      (54) Mguig, B.; Calatayud, M.; Minot, C. J. Mol. Struct. -Theochem2004, 709, 73.  

    55. [55]

      (55) Wang, Z.; Zhao, Y.; Cui, X.; Tan, S.; Zhao, A.;Wang, B.; Yang,J.; Hou, J. G. J. Phys. Chem. C 2010, 114, 18222.  

  • 加载中
    1. [1]

      Jie ZHAOHuili ZHANGXiaoqing LUZhaojie WANG . Theoretical calculations of CO2 capture and separation by functional groups modified 2D covalent organic framework. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 275-283. doi: 10.11862/CJIC.20240213

    2. [2]

      Hao XURuopeng LIPeixia YANGAnmin LIUJie BAI . Regulation mechanism of halogen axial coordination atoms on the oxygen reduction activity of Fe-N4 site: A density functional theory study. Chinese Journal of Inorganic Chemistry, 2025, 41(4): 695-701. doi: 10.11862/CJIC.20240302

    3. [3]

      Jie ZHAOSen LIUQikang YINXiaoqing LUZhaojie WANG . Theoretical calculation of selective adsorption and separation of CO2 by alkali metal modified naphthalene/naphthalenediyne. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 515-522. doi: 10.11862/CJIC.20230385

    4. [4]

      Bing WEIJianfan ZHANGZhe CHEN . Research progress in fine tuning of bimetallic nanocatalysts for electrocatalytic carbon dioxide reduction. Chinese Journal of Inorganic Chemistry, 2025, 41(3): 425-439. doi: 10.11862/CJIC.20240201

    5. [5]

      Zhiquan Zhang Baker Rhimi Zheyang Liu Min Zhou Guowei Deng Wei Wei Liang Mao Huaming Li Zhifeng Jiang . Insights into the Development of Copper-based Photocatalysts for CO2 Conversion. Acta Physico-Chimica Sinica, 2024, 40(12): 2406029-. doi: 10.3866/PKU.WHXB202406029

    6. [6]

      Meifeng Zhu Jin Cheng Kai Huang Cheng Lian Shouhong Xu Honglai Liu . Classical Density Functional Theory for Understanding Electrochemical Interface. University Chemistry, 2025, 40(3): 148-152. doi: 10.12461/PKU.DXHX202405166

    7. [7]

      Kaifu Zhang Shan Gao Bin Yang . Application of Theoretical Calculation with Fun Practice in Raman Spectroscopy Experimental Teaching. University Chemistry, 2025, 40(3): 62-67. doi: 10.12461/PKU.DXHX202404045

    8. [8]

      Wei HEJing XITianpei HENa CHENQuan YUAN . Application of solar-driven inorganic semiconductor-microbe hybrids in carbon dioxide fixation and biomanufacturing. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 35-44. doi: 10.11862/CJIC.20240364

    9. [9]

      Xiaoning TANGShu XIAJie LEIXingfu YANGQiuyang LUOJunnan LIUAn XUE . Fluorine-doped MnO2 with oxygen vacancy for stabilizing Zn-ion batteries. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1671-1678. doi: 10.11862/CJIC.20240149

    10. [10]

      Caixia Lin Zhaojiang Shi Yi Yu Jianfeng Yan Keyin Ye Yaofeng Yuan . Ideological and Political Design for the Electrochemical Synthesis of Benzoxathiazine Dioxide Experiment. University Chemistry, 2024, 39(2): 61-66. doi: 10.3866/PKU.DXHX202309005

    11. [11]

      Maitri BhattacharjeeRekha Boruah SmritiR. N. Dutta PurkayasthaWaldemar ManiukiewiczShubhamoy ChowdhuryDebasish MaitiTamanna Akhtar . Synthesis, structural characterization, bio-activity, and density functional theory calculation on Cu(Ⅱ) complexes with hydrazone-based Schiff base ligands. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1409-1422. doi: 10.11862/CJIC.20240007

    12. [12]

      Xiaochen Zhang Fei Yu Jie Ma . 多角度数理模拟在电容去离子中的前沿应用. Acta Physico-Chimica Sinica, 2024, 40(11): 2311026-. doi: 10.3866/PKU.WHXB202311026

    13. [13]

      Weina Wang Lixia Feng Fengyi Liu Wenliang Wang . Computational Chemistry Experiments in Facilitating the Study of Organic Reaction Mechanism: A Case Study of Electrophilic Addition of HCl to Asymmetric Alkenes. University Chemistry, 2025, 40(3): 206-214. doi: 10.12461/PKU.DXHX202407022

    14. [14]

      Ke Li Chuang Liu Jingping Li Guohong Wang Kai Wang . 钛酸铋/氮化碳无机有机复合S型异质结纯水光催化产过氧化氢. Acta Physico-Chimica Sinica, 2024, 40(11): 2403009-. doi: 10.3866/PKU.WHXB202403009

    15. [15]

      Endong YANGHaoze TIANKe ZHANGYongbing LOU . Efficient oxygen evolution reaction of CuCo2O4/NiFe-layered bimetallic hydroxide core-shell nanoflower sphere arrays. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 930-940. doi: 10.11862/CJIC.20230369

    16. [16]

      Yu Wang Shoulei Zhang Tianming Lv Yan Su Xianyu Liu Fuping Tian Changgong Meng . Introduce a Comprehensive Inorganic Synthesis Experiment: Synthesis of Nano Zinc Oxide via Microemulsion Using Waste Soybean Oil. University Chemistry, 2024, 39(7): 316-321. doi: 10.3866/PKU.DXHX202311035

    17. [17]

      Zijian Jiang Yuang Liu Yijian Zong Yong Fan Wanchun Zhu Yupeng Guo . Preparation of Nano Zinc Oxide by Microemulsion Method and Study on Its Photocatalytic Activity. University Chemistry, 2024, 39(5): 266-273. doi: 10.3866/PKU.DXHX202311101

    18. [18]

      Zhuoya WANGLe HEZhiquan LINYingxi WANGLing LI . Multifunctional nanozyme Prussian blue modified copper peroxide: Synthesis and photothermal enhanced catalytic therapy of self-provided hydrogen peroxide. Chinese Journal of Inorganic Chemistry, 2024, 40(12): 2445-2454. doi: 10.11862/CJIC.20240194

    19. [19]

      Xiaomei Ning Liang Zhan Xiaosong Zhou Jin Luo Xunfu Zhou Cuifen Luo . Preparation and Electro-Oxidation Performance of PtBi Supported on Carbon Cloth: A Recommended Comprehensive Chemical Experiment. University Chemistry, 2024, 39(11): 217-224. doi: 10.3866/PKU.DXHX202401085

    20. [20]

      Siyu HOUWeiyao LIJiadong LIUFei WANGWensi LIUJing YANGYing ZHANG . Preparation and catalytic performance of magnetic nano iron oxide by oxidation co-precipitation method. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1577-1582. doi: 10.11862/CJIC.20230469

Metrics
  • PDF Downloads(1299)
  • Abstract views(2950)
  • HTML views(3)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return