Citation: MARÍ Bernabé, SINGH Krishan-Chander, MOLLAR Miguel, MOYA Mónica. Growth Mechanism and Morphology of ZnO/eosin-Y Hybrid Thin Films[J]. Acta Physico-Chimica Sinica, ;2012, 28(01): 251-256. doi: 10.3866/PKU.WHXB201228251 shu

Growth Mechanism and Morphology of ZnO/eosin-Y Hybrid Thin Films

  • Received Date: 8 August 2011
    Available Online: 8 November 2011

    Fund Project: The project was supported by the Spanish vernment through MCINN Grant (MAT2009-14625-C03-03) (MAT2009-14625-C03-03)MEC Financial Fund(SAB2010-0019) for Singh, K. C. (SAB2010-0019)

  • Thin hybrid films of ZnO/eosin-Y were prepared by electrodeposition at -0.8 and -0.9 V in aqueous and non-aqueous baths at temperatures ranging from 40 to 90 °C with dye concentrations of 100 and 400 μmol·L-1. The films were characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM), energy-dispersive X-ray analysis (EDX), and absorption spectroscopy. The films prepared in a non-aqueous bath were non-porous and did not adsorb dye molecules on their surface. However, the films grown in aqueous media were porous in nature and adsorbed dye during the deposition of ZnO. Preferential growth of the film along the (002) face was observed, and the highest crystallinity was achieved when the film was deposited at 60 °C. The maximum absorption was achieved for the films grown at 60 to 70 °C, a deposition potential of -0.9 V, and a dye concentration of 100 μmol·L-1.
  • 加载中
    1. [1]

      (1) Bube, R. H. Photoconductivity of Solids;Wiley: New York, 1960.

    2. [2]

      (2) Zink Oxide Bulk, Thin Films and Nanostructures; Jagadish, C., Pearton, S. Eds.; Elsevier: Amsterdam, 2006.

    3. [3]

      (3) Gupta, T. K. J. Am. Ceram. Soc. 1990, 73, 1817.  

    4. [4]

      (4) Look, D. C. Mater. Sci. Eng. 2001, 80, 383.  

    5. [5]

      (5) Yamamoto, T.; Shiosaki, T.; Kawabata, A. J. Appl. Phys. 1980, 51, 3113.  

    6. [6]

      (6) Aeugle, T. H.; Bialas, K.; Heneka, H.; Pleyer,W. Thin Solid Films 1991, 201, 293.  

    7. [7]

      (7) Chatterjee, A. P. ; Mitra, P.; Mukhopadhyay, A. K. J. Mater. Sci. 1999, 34, 4225.  

    8. [8]

      (8) Nicoll, F. H. Appl. Phys. Lett. 1996, 9, 13.

    9. [9]

      (9) Bagnall, D. M.; Chen, Y. F.; to, T.; Koyama, S.; Shen, M. Y.; Yao, T.; Zhu, Z. Appl. Phys. Lett. 1997, 70, 2230.  

    10. [10]

      (10) Wiersma, D. Nature, 2000, 406, 132.  

    11. [11]

      (11) Nanto, H.; Minami, T.; Shooji, S.; Takata, S. J. Appl. Phys. 1984, 55, 1029.  

    12. [12]

      (12) Natsume, Y.; Sakata, H.; Hirayama, T.; Yanagida, H. J. Appl. Phys. 1992, 72, 4203.  

    13. [13]

      (13) Okamura, T.; Seki, Y.; Nagakary, S.; Okushi, H. Jpn. J. Appl. Phys. 1992, 31, 762.  

    14. [14]

      (14) Aranovich, J.; Ortiz, A.; Bube, R. H. J. Vac. Sci. Technol. 1979, 16, 994.  

    15. [15]

      (15) Izaki, M.; Omi, T. Appl. Phys. Lett. 1996, 68, 2439.  

    16. [16]

      (16) Yoshida, T.; Terada, K.; Schlettwein, D.; Oekermann, T.; Sugiura, T.; Minoura, H. Advanced Materials 2000, 12, 1214.  

    17. [17]

      (17) Lee,W. J.; Okada, H.;Wakahara, A.; Yoshida, A. Ceramics International 2006, 32, 495.  

    18. [18]

      (18) Suri, P.; Mehra, R. M. Solar Energy Materials and Solar Cells 2007, 91, 518.  

    19. [19]

      (19) Suri, P.; M. Panwar, M.; Mehra, R. M. Materials Science-Poland 2007, 25, 137.

    20. [20]

      (20) Wu, J.; Chen, G. R.; Yang, H. H.; Ku, C. H.; Lai, J. Y. Appl. Phys. Lett. 2007, 90, 213.

    21. [21]

      (21) Hara, K.; Horiguchi, T.; Kinoshita, T.; Sayama, K.; Sugihara, H.; Arakawa, H. Solar Energy Materials and Solar Cells 2000, 64, 115.  

    22. [22]

      (22) Matsumura, M.; Matsudaira, S.; Tsubomura, H.; Takata, M.; Yanagida, H. Industrial & Engineering Chemistry Product Research and Development 1980, 19, 415.  

    23. [23]

      (23) O'Regan, B.; Grätzel, M. Nature 1991, 353, 737.  

    24. [24]

      (24) Barbe, C. J.; Arendse, F.; Comte, P.; Jirousek, M.; Lenzmann, F.; Shklover, V.; Grätzel, M. J. Am. Ceram. Soc. 1997, 80, 3157.

    25. [25]

      (25) Nazeeruddin, M. K.; Kay, A.; Rodicio, I.; Humphry-Baker, R.; Mueller, E.; Liska, P.; Vlachopoulos, N.; Grätzel, M. J. Am. Chem. Soc 1993, 115, 6382.  

    26. [26]

      (26) Cembrero, J.; Elmanouni, A.; Hartiti, B.; Mollar, M.; Marí, B. Thin Solid Films 2004, 45, 198.

    27. [27]

      (27) Graaf, H.; Maedler, C.; Kehr, M.; Oekermann, T. J. Phys. Chem. C 2009, 113, 6910.  

    28. [28]

      (28) Boeckler, C.; Oekermann, T.; Soruban, M.; Ichinose, K.; Yoshida, T. Phys. Stat. Sol. 2005, 205, 2388.

    29. [29]

      (29) Gerischer, H.; Sorg, N.; Electrochim. Acta 1992, 37, 827.  

    30. [30]

      (30) Choi, J. H.; Jang, E. S.;Won, J. H.; Chung, J. H.; Jang, D. J.; Kim, Y.W. Adv. Mater. 2003, 15, 1911.  

    31. [31]

      (31) Yoshida, T.; Pauporte, T.; Lincot, D.; Oekermann, T.; Minoura, H. J. Electrochem. Soc. 2003, 150, C608.

    32. [32]

      (32) Yoshida, T.; Tochimoto, M.; Schlettwein, D.;Wohrle, D.; Sugiura, T.; Minoura, H. Chem. Mater. 1999, 11, 2657.  

    33. [33]

      (33) Gan, X.; Li, X.; Gao, X.; He, X.; Zhuge, F. Mater. Chem. Phys. 2009, 114, 920.  

    34. [34]

      (34) Yoshida, T.; Zhang, J.; Komatsu, D.; Sawatani, S.; Minoura, H.; Pauporté, T.; Lincot, D.; Oekermann, T.; Schlettwein, D.; Tada, H.;Wöhrle, D.; Funabiki, K.; Matsui, M.; Miura, H.; Yanagi, H. Adv. Funct. Mater, 2009, 1, 17.

  • 加载中
    1. [1]

      Zihao WangJing XueZhicui SongJianxiong XingAijun ZhouJianmin MaJingze Li . Li-Zn alloy patch for defect-free polymer interface film enables excellent protection effect towards stable Li metal anode. Chinese Chemical Letters, 2024, 35(10): 109489-. doi: 10.1016/j.cclet.2024.109489

    2. [2]

      Junhan LuoQi QingLiqin HuangZhe WangShuang LiuJing ChenYuexiang Lu . Non-contact gaseous microplasma electrode as anode for electrodeposition of metal and metal alloy in molten salt. Chinese Chemical Letters, 2024, 35(4): 108483-. doi: 10.1016/j.cclet.2023.108483

    3. [3]

      Kexin YuanYulei LiuHaoran FengYi LiuJun ChengBeiyang LuoQinglian WuXinyu ZhangYing WangXian BaoWanqian GuoJun Ma . Unlocking the potential of thin-film composite reverse osmosis membrane performance: Insights from mass transfer modeling. Chinese Chemical Letters, 2024, 35(5): 109022-. doi: 10.1016/j.cclet.2023.109022

    4. [4]

      Ting WANGPeipei ZHANGShuqin LIURuihong WANGJianjun ZHANG . A Bi-CP-based solid-state thin-film sensor: Preparation and luminescence sensing for bioamine vapors. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1615-1621. doi: 10.11862/CJIC.20240134

    5. [5]

      Wenhao ChenMuxuan WuHan ChenLue MoYirong Zhu . Cu2Se@C thin film with three-dimensional braided structure as a cathode material for enhanced Cu2+ storage. Chinese Chemical Letters, 2024, 35(5): 108698-. doi: 10.1016/j.cclet.2023.108698

    6. [6]

      Yun WeiLei ZhouWenbin HuLiming YangGuang YangChaoqiang WangHui ShiFei HanYufa FengXuan DingPenghui ShaoXubiao Luo . Recovery of cathode copper and ternary precursors from CuS slag derived by waste lithium-ion batteries: Process analysis and evaluation. Chinese Chemical Letters, 2024, 35(7): 109172-. doi: 10.1016/j.cclet.2023.109172

    7. [7]

      Ning DINGSiyu WANGShihua YUPengcheng XUDandan HANDexin SHIChao ZHANG . Crystalline and amorphous metal sulfide composite electrode materials with long cycle life: Preparation and performance of hybrid capacitors. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1784-1794. doi: 10.11862/CJIC.20240146

    8. [8]

      Haiyang Gu Xiang Xu . Multicolor hybrid metal halides and anti-counterfeiting. Chinese Journal of Structural Chemistry, 2024, 43(9): 100352-100352. doi: 10.1016/j.cjsc.2024.100352

    9. [9]

      Ning LISiyu DUXueyi WANGHui YANGTao ZHOUZhimin GUANPeng FEIHongfang MAShang JIANG . Preparation and efficient catalysis for olefins epoxidation of a polyoxovanadate-based hybrid. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 799-808. doi: 10.11862/CJIC.20230372

    10. [10]

      Yan Cheng Hai-Quan Yao Ya-Di Zhang Chao Shi Heng-Yun Ye Na Wang . Nitrate-bridged hybrid organic-inorganic perovskites. Chinese Journal of Structural Chemistry, 2024, 43(9): 100358-100358. doi: 10.1016/j.cjsc.2024.100358

    11. [11]

      Na WangWang LuoHuaiyi ShenHuakai LiZejiang XuZhiyuan YueChao ShiHengyun YeLeping Miao . Crystal engineering regulation achieving inverse temperature symmetry breaking ferroelasticity in a cationic displacement type hybrid perovskite system. Chinese Chemical Letters, 2024, 35(5): 108696-. doi: 10.1016/j.cclet.2023.108696

    12. [12]

      Jingqi Ma Huangjie Lu Junpu Yang Liangwei Yang Jian-Qiang Wang Xianlong Du Jian Lin . Rational design and synthesis of a uranyl-organic hybrid for X-ray scintillation. Chinese Journal of Structural Chemistry, 2024, 43(5): 100275-100275. doi: 10.1016/j.cjsc.2024.100275

    13. [13]

      Kangrong YanZiqiu ShenYanchun HuangBenfang NiuHongzheng ChenChang-Zhi Li . Curing the vulnerable heterointerface via organic-inorganic hybrid hole transporting bilayers for efficient inverted perovskite solar cells. Chinese Chemical Letters, 2024, 35(6): 109516-. doi: 10.1016/j.cclet.2024.109516

    14. [14]

      Tian YangYi LiuLina HuaYaoyao ChenWuqian GuoHaojie XuXi ZengChanghao GaoWenjing LiJunhua LuoZhihua Sun . Lead-free hybrid two-dimensional double perovskite with switchable dielectric phase transition. Chinese Chemical Letters, 2024, 35(6): 108707-. doi: 10.1016/j.cclet.2023.108707

    15. [15]

      Jiayu XuMeng LiBaoxia DongLigang Feng . Fully fluorinated hybrid zeolite imidazole/Prussian blue analogs with combined advantages for efficient oxygen evolution reaction. Chinese Chemical Letters, 2024, 35(6): 108798-. doi: 10.1016/j.cclet.2023.108798

    16. [16]

      Huirong LIUHao XUDunru ZHUJunyong ZHANGChunhua GONGJingli XIE . Syntheses, structures, photochromic and photocatalytic properties of two viologen-polyoxometalate hybrid materials. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1368-1376. doi: 10.11862/CJIC.20240066

    17. [17]

      Huaran ZhangYuting HuangYingjie TangDekun KongYi Zou . Genome mining of multi-substituted alkylresorcinols from a hybrid highly reducing- and type Ⅲ- polyketide pathway. Chinese Chemical Letters, 2024, 35(7): 108968-. doi: 10.1016/j.cclet.2023.108968

    18. [18]

      Wenhao WangGuangpu ZhangQiufeng WangFancang MengHongbin JiaWei JiangQingmin Ji . Hybrid nanoarchitectonics of TiO2/aramid nanofiber membranes with softness and durability for photocatalytic dye degradation. Chinese Chemical Letters, 2024, 35(7): 109193-. doi: 10.1016/j.cclet.2023.109193

    19. [19]

      Ji LiuDongsheng HeTianjiao HaoYumin HuYan ZhaoZhen LiChang LiuDaquan ChenQiyue WangXiaofei XinYan Shen . Gold mineralized "hybrid nanozyme bomb" for NIR-II triggered tumor effective permeation and cocktail therapy. Chinese Chemical Letters, 2024, 35(9): 109296-. doi: 10.1016/j.cclet.2023.109296

    20. [20]

      Xiao-Tong Sun Hao-Fei Ni Yi Zhang Da-Wei Fu . Hybrid perovskite shows temperature-dependent photoluminescence and dielectric response triggered by halogen substitution. Chinese Journal of Structural Chemistry, 2024, 43(6): 100212-100212. doi: 10.1016/j.cjsc.2024.100212

Metrics
  • PDF Downloads(1064)
  • Abstract views(1729)
  • HTML views(8)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return