Citation: XIAO Yi-Hong, YANG Huang-Gen, CAI Guo-Hui, ZHENG Yong, ZHENG Ying, WEI Ke-Mei. Influence of Reductive Treatment on the Performance of CeO2-ZrO2-Al2O3 Composite Oxide[J]. Acta Physico-Chimica Sinica, ;2012, 28(01): 245-250. doi: 10.3866/PKU.WHXB201228245 shu

Influence of Reductive Treatment on the Performance of CeO2-ZrO2-Al2O3 Composite Oxide

  • Received Date: 2 September 2011
    Available Online: 7 November 2011

    Fund Project: 福建省工业科技重大项目(2010H6014)资助 (2010H6014)

  • A CeO2-ZrO2-Al2O3 composite oxide (CZA) and a CeO2-ZrO2 composite oxide (CZ) were prepared by the co-precipitation method. The samples were thermally aged in a flowing air atmosphere and in 10% H2/Ar flow. The structure and performance of the composite oxides were studied by X-ray diffraction (XRD), oxygen storage capacity (OSC) measurements, and H2 temperature-programmed reduction (H2- TPR). The results show that a CeAlO3 phase was formed after CZA was reductively aged at 950 °C and an increase in temperature benefited the formation of CeAlO3. The OSC of CZA increased with an increase in the reductive treatment temperature and it was 1270.3 μmol·g-1 when the temperature reached 900 °C. However, the OSC decreased with an increase in the temperature. After CZA was reduced at 1100 °C the OSC was only 23.2 μmol·g-1. We found that the OSC and the reducibility of the material were remarkably influenced by the formation of a CeAlO3 phase after CZA was reductively aged.
  • 加载中
    1. [1]

      (1) Heck, R. M.; Farrauto, R. J. Appl. Catal. A 2001, 221, 443.  

    2. [2]

      (2) Di Monte, R.; Fornasiero, P.; Desinan, S.; Kaspar, J. Chem. Mater. 2004, 16, 4273.  

    3. [3]

      (3) Chuang, C. C.; Hsiang, H. I.; Hwang, J. S.;Wang, T. S. J. Alloy. Compd. 2009, 470, 387.  

    4. [4]

      (4) Kaspar, J.; Fornasiero, P.; Hickey, N. Catal. Today 2003, 77, 419.  

    5. [5]

      (5) Guo, J. X.; Yuan, S. H.; ng, M. C.; Zhang, L.;Wu, D. D.; Zhao, M.; Chen, Y. Q. Acta Phys. -Chim. Sin. 2007, 23 (1), 73. [郭家秀, 袁书华, 龚茂初, 张磊, 吴冬冬, 赵明, 陈耀强. 物理化学学报, 2007, 23 (1), 73.]

    6. [6]

      (6) Wei, Z. L.; Li, H. M.; Zhang, X. Y.; Yan, S. H.; Lv, Z.; Chen, Y. Q.; ng, M. C. J. Alloy. Compd. 2008, 455, 322.  

    7. [7]

      (7) Zhang, X. Y.; Long, E.Y.; Li, Y. L.; Guo, J. X.; Zhang, L. J.; ng, M. C.;Wang, M. H.; Chen, Y. Q. J. Nat. Gas Chem. 2009, 18, 139.  

    8. [8]

      (8) Cai, L.; Zhao, M.; Pi, Z.; ng, M. C.; Chen, Y. Q. Chin. J. Catal. 2008, 29, 108. [蔡黎, 赵明,皮展, 龚茂初, 陈耀强. 催化学报, 2008, 29, 108.]  

    9. [9]

      (9) Cai, L.;Wang, K. C.; Zhao, M.; ng, M. C.; Chen, Y. Q. Acta Phys. -Chim. Sin. 2009, 25 (5), 859. [蔡黎, 王康才, 赵明, 龚茂初, 陈耀强. 物理化学学报, 2009, 25 (5), 859.]

    10. [10]

      (10) Morikawa, A.; Suzuki, T.; Kanazawa, T.; Kikuta, K.; Suda, A.; Shinjo, H. Appl. Catal. B 2008, 78, 210.  

    11. [11]

      (11) Shyu, J. Z.;Weber,W. H.; Gandhi, H. S. J. Phys. Chem. 1988, 92 (17), 4964.

    12. [12]

      (12) Miki, T.; Ogawa, T.; Ueno, A.; Matsuura, S.; Sato, M. Chem. Lett. 1988, 565.

    13. [13]

      (13) Morikawa, A.; Kikuta, K.; Suda, A.; Shinjo, H. Appl. Catal. B 2009, 88, 542.  

    14. [14]

      (14) Vidal, H.; Bernal, S., Ka?par, J. Catal. Today 1999, 54, 93.  

    15. [15]

      (15) Hietikko, M.; Lassi, U.; Kallinen, K.; Savim?ki, A.; H?rk?nen, M.; Pursiainen, J.; Laitinen, R. S.; Keiski, R. L. Appl. Cata. A 2004, 277, 107.  

    16. [16]

      (16) Lassi, U.; Polvinen, R.; Suhonen, S.; Kallinen, K.; Savim?ki, A.; H?rk?nen, M.; Valden, M.; Keiski, R. L. Appl. Catal. A 2004, 263, 241.  

    17. [17]

      (17) Wang, J.;Wen, J.; Shen, M. Q. J. Phys. Chem. C 2008, 112, 5113.  

    18. [18]

      (18) Kishimoto, H.; Omata, T.; Otsuka-Yao-Matsuo,S.; Ueda, K.; Hosono, H.; Kawazoe, H. J. Alloy. Compd. 2000, 312, 94.  

    19. [19]

      (19) Yamamoto, T.; Suzuki, A.; Nagai, Y.; Tanabe, T.; Dong, F.; Inada, Y.; Nomura, M.; Tada, M.; Iwasawa, Y. Angew. Chem. Int. Edit. 2007, 46, 9253.  

    20. [20]

      (20) Liotta, L. F.; Lon , A.; Pantaleo, G.; Di Carlo, G.; Martorana, A.; Cimino, S.; Russo, G.; Degandllo, G. Appl. Catal. B 2009, 90, 470.  

    21. [21]

      (21) Zhu, Q. C.; Li, X. M.; Li, H. M.; Zheng, L. M.; Chen, Y. Q.; ng, M. C. J. Inorg. Mater. 2010, 25 (1), 13. [祝清超, 黎秀敏, 李红梅, 郑灵敏, 陈耀强, 龚茂初. 无机材料学报, 2010, 25 (1), 13.]

    22. [22]

      (22) Nagai, Y.; Yamamoto, T.; Tanaka, T.; Yoshida, S.; Nonaka, T.; Okamoto, T.; Suda, A.; Sugiura, M. Catal. Today 2002, 74, 225.  

    23. [23]

      (23) Wang, H. F.; Guo, Y. L.; Lu, G. Z.; Hu, P. Angew. Chem. Int. Edit. 2009, 48, 8289.  

    24. [24]

      (24) Prakash, A. S.; Shivakumara, C.; Hegde, M. S. Mater. Sci. Engin. B 2007, 139, 55.  

    25. [25]

      (25) Kakuta, N.; Ikawa, S.; Eguchi, T.; Murakami, K.; Ohkita, H.; Mizushima, T. J. Alloy. Compd. 2006, 408-412, 1078.

    26. [26]

      (26) Damyanova, S.; Pawelec, B.; Arishtirova, K. Appl. Catal. A 2008, 337, 86.  

    27. [27]

      (27) Fornasiero, P.; DiMonte, R.; Rao, G. R.; Kašpar, J.; Meriani, S.; Trovarelli, A.; Grazinai, M. J. Catal. 1995, 151 (1), 168.

    28. [28]

      (28) Yao, M. H.; Baird, R. J.; Kunz, F.W.; Hoost, T. E. J. Catal. 1997, 166 (1), 67.

  • 加载中
    1. [1]

      Jianyu Qin Yuejiao An Yanfeng ZhangIn Situ Assembled ZnWO4/g-C3N4 S-Scheme Heterojunction with Nitrogen Defect for CO2 Photoreduction. Acta Physico-Chimica Sinica, 2024, 40(12): 2408002-. doi: 10.3866/PKU.WHXB202408002

    2. [2]

      Jinyi Sun Lin Ma Yanjie Xi Jing Wang . Preparation and Electrocatalytic Nitrogen Reduction Performance Study of Vanadium Nitride@Nitrogen-Doped Carbon Composite Nanomaterials: A Recommended Comprehensive Chemistry Experiment. University Chemistry, 2024, 39(4): 184-191. doi: 10.3866/PKU.DXHX202310094

    3. [3]

      Yanan Liu Yufei He Dianqing Li . Preparation of Highly Dispersed LDHs-based Catalysts and Testing of Nitro Compound Reduction Performance: A Comprehensive Chemical Experiment for Research Transformation. University Chemistry, 2024, 39(8): 306-313. doi: 10.3866/PKU.DXHX202401081

    4. [4]

      Ping ZHANGChenchen ZHAOXiaoyun CUIBing XIEYihan LIUHaiyu LINJiale ZHANGYu'nan CHEN . Preparation and adsorption-photocatalytic performance of ZnAl@layered double oxides. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1965-1974. doi: 10.11862/CJIC.20240014

    5. [5]

      Hailang JIAHongcheng LIPengcheng JIYang TENGMingyun GUAN . Preparation and performance of N-doped carbon nanotubes composite Co3O4 as oxygen reduction reaction electrocatalysts. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 693-700. doi: 10.11862/CJIC.20230402

    6. [6]

      Xiaofeng Zhu Bingbing Xiao Jiaxin Su Shuai Wang Qingran Zhang Jun Wang . Transition Metal Oxides/Chalcogenides for Electrochemical Oxygen Reduction into Hydrogen Peroxides. Acta Physico-Chimica Sinica, 2024, 40(12): 2407005-. doi: 10.3866/PKU.WHXB202407005

    7. [7]

      Chuanming GUOKaiyang ZHANGYun WURui YAOQiang ZHAOJinping LIGuang LIU . Performance of MnO2-0.39IrOx composite oxides for water oxidation reaction in acidic media. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1135-1142. doi: 10.11862/CJIC.20230459

    8. [8]

      Kun Xu Xinxin Song Zhilei Yin Jian Yang Qisheng Song . Comprehensive Experimental Design of Preferential Orientation of Zinc Metal by Heat Treatment for Enhanced Electrochemical Performance. University Chemistry, 2024, 39(4): 192-197. doi: 10.3866/PKU.DXHX202309050

    9. [9]

      Zhuo WANGJunshan ZHANGShaoyan YANGLingyan ZHOUYedi LIYuanpei LAN . Preparation and photocatalytic performance of CeO2-reduced graphene oxide by thermal decomposition. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1708-1718. doi: 10.11862/CJIC.20240067

    10. [10]

      Zhihuan XUQing KANGYuzhen LONGQian YUANCidong LIUXin LIGenghuai TANGYuqing LIAO . Effect of graphene oxide concentration on the electrochemical properties of reduced graphene oxide/ZnS. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1329-1336. doi: 10.11862/CJIC.20230447

    11. [11]

      Limei CHENMengfei ZHAOLin CHENDing LIWei LIWeiye HANHongbin WANG . Preparation and performance of paraffin/alkali modified diatomite/expanded graphite composite phase change thermal storage material. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 533-543. doi: 10.11862/CJIC.20230312

    12. [12]

      Ming ZHENGYixiao ZHANGJian YANGPengfei GUANXiudong LI . Energy storage and photoluminescence properties of Sm3+-doped Ba0.85Ca0.15Ti0.90Zr0.10O3 lead-free multifunctional ferroelectric ceramics. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 686-692. doi: 10.11862/CJIC.20230388

    13. [13]

      Yi YANGShuang WANGWendan WANGLimiao CHEN . Photocatalytic CO2 reduction performance of Z-scheme Ag-Cu2O/BiVO4 photocatalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 895-906. doi: 10.11862/CJIC.20230434

    14. [14]

      Jiapei Zou Junyang Zhang Xuming Wu Cong Wei Simin Fang Yuxi Wang . A Comprehensive Experiment Based on Electrocatalytic Nitrate Reduction into Ammonia: Synthesis, Characterization, Performance Exploration, and Applicable Design of Copper-based Catalysts. University Chemistry, 2024, 39(6): 373-382. doi: 10.3866/PKU.DXHX202312081

    15. [15]

      Yunting Shang Yue Dai Jianxin Zhang Nan Zhu Yan Su . Something about RGO (Reduced Graphene Oxide). University Chemistry, 2024, 39(9): 273-278. doi: 10.3866/PKU.DXHX202306050

    16. [16]

      Endong YANGHaoze TIANKe ZHANGYongbing LOU . Efficient oxygen evolution reaction of CuCo2O4/NiFe-layered bimetallic hydroxide core-shell nanoflower sphere arrays. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 930-940. doi: 10.11862/CJIC.20230369

    17. [17]

      Xuejiao Wang Suiying Dong Kezhen Qi Vadim Popkov Xianglin Xiang . Photocatalytic CO2 Reduction by Modified g-C3N4. Acta Physico-Chimica Sinica, 2024, 40(12): 2408005-. doi: 10.3866/PKU.WHXB202408005

    18. [18]

      Hui Shi Shuangyan Huan Yuzhi Wang . Ideological and Political Design of Potassium Permanganate Oxidation-Reduction Titration Experiment. University Chemistry, 2024, 39(2): 175-180. doi: 10.3866/PKU.DXHX202308042

    19. [19]

      Tong Zhou Jun Li Zitian Wen Yitian Chen Hailing Li Zhonghong Gao Wenyun Wang Fang Liu Qing Feng Zhen Li Jinyi Yang Min Liu Wei Qi . Experiment Improvement of “Redox Reaction and Electrode Potential” Based on the New Medical Concept. University Chemistry, 2024, 39(8): 276-281. doi: 10.3866/PKU.DXHX202401005

    20. [20]

      Ji-Quan Liu Huilin Guo Ying Yang Xiaohui Guo . Calculation and Discussion of Electrode Potentials in Redox Reactions of Water. University Chemistry, 2024, 39(8): 351-358. doi: 10.3866/PKU.DXHX202401031

Metrics
  • PDF Downloads(839)
  • Abstract views(2348)
  • HTML views(4)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return