Citation:
	            
		            YANG  Yong-Hong, LI  Fen-Fen, YANG  Cheng, ZHANG  Wen-Yu, WU  Jin-Hu. Grafting Morphologies of TEPA on SBA-15(P) and Its Effect on CO2 Adsorption Performance[J]. Acta Physico-Chimica Sinica,
							;2012, 28(01): 195-200.
						
							doi:
								10.3866/PKU.WHXB201228195
						
					
				
					
				
	        
- 
	                	Various amine-functionalized CO2 adsorbents were prepared by incorporating tetraethylenepenthamine (TEPA) onto SBA-15(P) by controlling the impregnation method and its process. The materials were characterized using X-ray diffraction (XRD), N2-adsorption, elemental analysis, and Fourier transform infrared (FTIR) techniques. Their adsorptive capacities were determined by CO2-temperature programmed desorption (TPD). The results indicate that the dynamic impregnation process using a TEPA ethanol solution was successful in loading TEPA into the channels of SBA-15(P). Moreover, bonding formation between the highly dispersed TEPA and SBA-15(P) was facilitated to CO2 adsorption/desorption. Therefore, a binding mechanism is proposed. The -NH2 group of TEPA forms hydrogen bonds with -OH and C-O-C groups on SBA-15(P), which results in the better dispersion of TEPA. However, the dynamic impregnation process for the TEPA ethanol solution can effectively avoid the formation of hydrogen bonds between the intra- and inter-molecules resulting in the high adsorptive capacity of the amino groups in TEPA.
- 
								Keywords:
								
 - 
												
SBA-15(P)
, - TEPA,
 - CO2,
 - Dynamic impregnation,
 - Bond formation,
 - Adsorptive capacity
 
 - 
												
 - 
	                	
	                 - 
	                	
- 
			
                    [1]
                
			
(1) Blauwhoff, P. M. M.; Versteeg, G. F.; Van Swaaij,W. P. M. Chemical Engineering Science 1984, 39, 207.

 - 
			
                    [2]
                
			
(2) Zheng, F.; Tran, D. N.; Busche, B. J.; Fryxell, G. E.; Addleman, R. S.; Zemanian, T. S.; Aardahl, C. L. Industrial & Engineering Chemistry Research 2005, 44, 3099.

 - 
			
                    [3]
                
			
(3) Chang, A. C. C.; Chuang, S. S. C.; Gray, M.; Soong, Y. Energy & Fuels 2003, 17, 468.

 - 
			
                    [4]
                
			
(4) Gray, M. L.; Soong, Y.; Champagne, K. J.; Baltrus, J.; Stevens, R.W.; Toochinda, P.; Chuang, S. S. C. Separation and Purification Technology 2004, 35, 31.

 - 
			
                    [5]
                
			
(5) Iyer, M. V.; Gupta, H.; Sakadjian, B. B.; Fan, L. S. Industrial & Engineering Chemistry Research 2004, 43, 3939.

 - 
			
                    [6]
                
			
(6) Reddy, E. P.; Smirniotis, P. G. The Journal of Physical Chemistry B 2004, 108, 7794.

 - 
			
                    [7]
                
			
(7) Bredesen, R.; Jordal, K.; Bolland, O. Chemical Engineering and Processing 2004, 43, 1129.

 - 
			
                    [8]
                
			
(8) Huang, H. Y.; Yang, R. T.; Chinn, D.; Munson, C. L. Industrial & Engineering Chemistry Research 2003, 42, 2427.

 - 
			
                    [9]
                
			
(9) Demontigny, D.; Tontiwachwuthikul, P.; Chakma, A. Journal of Membrane Science 2006, 277, 99.

 - 
			
                    [10]
                
			
(10) Xu, X. C.; Song, C. S.; Andresen, J. M.; Miller, B. G.; Scaroni, A.W. Energy & Fuels 2002, 16, 1463.

 - 
			
                    [11]
                
			
(11) Xu, X. C.; Song, C. S.; Andresen, J. M.; Miller, B. G.; Scaroni, A.W. Microporous and Mesoporous Materials 2003, 62, 29.

 - 
			
                    [12]
                
			
(12) Yoshitake, H.; Yokoi, T.; Tatsumi, T. Chemistry of Materials 2003, 15, 1713.

 - 
			
                    [13]
                
			
(13) Han, Y. J.; Stucky, G. D.; Butler, A. Journal of the American Chemical Society 1999, 121, 9897.

 - 
			
                    [14]
                
			
(14) Kubota, Y.; Nishizaki, Y.; Ikeya, H.; Saeki, M.; Hida, T.; Kawazu, S.; Yoshida, M.; Fujii, H.; Sugi, Y. Microporous and Mesoporous Materials 2004, 70, 135.

 - 
			
                    [15]
                
			
(15) Matsumoto, A.; Tsutsumi, K.; Schumacher, K.; Unger, K. K. Langmuir 2002, 18, 4014.

 - 
			
                    [16]
                
			
(16) Kimura, T.; Saeki, S.; Sugahara, Y.; Kuroda, K. Langmuir 1999, 15, 2794.

 - 
			
                    [17]
                
			
(17) Inagaki, S.; Guan, S.; Fukushima, Y.; Ohsuna, T.; Terasaki, O. Journal of the American Chemical Society 1999, 121, 9611.

 - 
			
                    [18]
                
			
(18) Feng, X.; Fryxell, G. E.;Wang, L. Q.; Kim, A. Y.; Liu, J.; Kemner, K. M. Science 1997, 276, 923.

 - 
			
                    [19]
                
			
(19) Choi, S.; Drese, J. H.; Jones, C.W. ChemSusChem 2009, 2, 796.

 - 
			
                    [20]
                
			
(20) Zhao, D.; Feng, J.; Huo, Q.; Melosh, N.; Fredrickson, G. H.; Chmelka, B. F.; Stucky, G. D. Science 1998, 279, 548.

 - 
			
                    [21]
                
			
(21) Yue, M. B.; Sun, L. B.; Cao, Y.;Wang, Z. J.;Wang, Y.; Yu, Q.; Zhu, J. H. Microporous and Mesoporous Materials 2008, 114, 74.

 - 
			
                    [22]
                
			
(22) Aronu, U. E.; Svendsen, H. F.; Hoff, K. A.; Juliussen, O. Solvent Selection for Carbon dioxide Absorption Energy Procedia 2009, 1, 1051. 9th International Conference on Greenhouse Gas Control Technologies,Washington DC, Nov. 16-20, 2008.
 - 
			
                    [23]
                
			
(23) da Silva, E. F.; Svendsen, H. F. International Journal of Greenhouse Gas Control 2007, 1, 151.

 - 
			
                    [24]
                
			
(24) Yoshitake, H.; Koiso, E.; Horie, H.; Yoshimura, H. Microporous and Mesoporous Materials 2005, 85, 183.

 - 
			
                    [25]
                
			
(25) Hiyoshi, N.; Yo , K.; Yashima, T. Microporous and Mesoporous Materials 2005, 84, 357.

 - 
			
                    [26]
                
			
(26) Yue, M. B.; Chun, Y.; Cao, Y.; Dong, X.; Zhu, J. H. Advanced Functional Materials 2006, 16, 1717.

 - 
			
                    [27]
                
			
(27) Knowles, G. P.; Graham, J. V.; Delaney, S.W.; Chaffee, A. L. Fuel Processing Technology 2005, 86, 1435.

 - 
			
                    [28]
                
			
(28) Wu, D. A. Novel Method to Prepare Silica Based Carbon Dioxide Capture Sorbent. Ph. D. Dissertation, The University of Akron, Akron, 2008.
 - 
			
                    [29]
                
			
(29) Stevens,W. J. J.; Mertens, M.; Mullens, S.; Thijs, I.; Van Tendeloo, G.; Cool, P.; Vansant, E. F. Microporous and Mesoporous Materials 2006, 93, 119.

 - 
			
                    [30]
                
			
(30) Wei, J.W.; Shi, J. J.; Pan, H.; Su, Q. F.; Zhu, J. B.; Shi, Y. Microporous and Mesoporous Materials 2009, 117, 596.

 - 
			
                    [31]
                
			
(31) Cheng, C. F.; Lin, Y. C.; Cheng, H. H.; Chen, Y. C. Chemical Physics Letters 2003, 382, 496.

 - 
			
                    [32]
                
			
(32) Ding, Z. J.; Chen, J. H.; Guo, Y.; ng, X. Z. Bulletn of the Chinese Ceramic Society 2009, 28, 704. [丁志杰, 陈君华, 郭雨, 公旭中. 硅酸盐通报, 2009, 28, 704.]
 - 
			
                    [33]
                
			
(33) Su, Z. H.; Chen, Q. Y.; Li, J.; Liu, S. J. Acta Phys. -Chim. Sin. 2007, 23, 1760. [苏赵辉, 陈启元, 李洁, 刘士军. 物理化学学报, 2007, 23, 1760.]
 - 
			
                    [34]
                
			
(34) Ryoo, R.; Ko, C. H.; Kruk, M.; Antochshuk, V.; Jaroniec, M. The Journal of Physical Chemistry B 2000, 104, 11465.

 - 
			
                    [35]
                
			
(35) Yue, M. B.; Zhu, J. H. Chinese Journal of Catalysis 2008, 29, 1051. [岳明波, 朱建华. 催化学报, 2008 , 29, 1051.]
 - 
			
                    [36]
                
			
(36) Welcome toWikipedia, the free encyclopedia. http://en.wikipedia.org/wiki/Hydrogen_ bond (accessed Sep 07, 2011).
 
 - 
			
                    [1]
                
			
 - 
	                	
						
						
						
						
	                 - 
	                	
- 
				[1]
				
Xiting Zhou , Zhipeng Han , Xinlei Zhang , Shixuan Zhu , Cheng Che , Liang Xu , Zhenyu Sun , Leiduan Hao , Zhiyu Yang . Dual Modulation via Ag-Doped CuO Catalyst and Iodide-Containing Electrolyte for Enhanced Electrocatalytic CO2 Reduction to Multi-Carbon Products: A Comprehensive Chemistry Experiment. University Chemistry, 2025, 40(7): 336-344. doi: 10.12461/PKU.DXHX202412070
 - 
				[2]
				
Zixuan Zhu , Xianjin Shi , Yongfang Rao , Yu Huang . Recent progress of MgO-based materials in CO2 adsorption and conversion: Modification methods, reaction condition, and CO2 hydrogenation. Chinese Chemical Letters, 2024, 35(5): 108954-. doi: 10.1016/j.cclet.2023.108954
 - 
				[3]
				
Tianbo Jia , Lili Wang , Zhouhao Zhu , Baikang Zhu , Yingtang Zhou , Guoxing Zhu , Mingshan Zhu , Hengcong Tao . Modulating the degree of O vacancy defects to achieve selective control of electrochemical CO2 reduction products. Chinese Chemical Letters, 2024, 35(5): 108692-. doi: 10.1016/j.cclet.2023.108692
 - 
				[4]
				
Li Li , Fanpeng Chen , Bohang Zhao , Yifu Yu . Understanding of the structural evolution of catalysts and identification of active species during CO2 conversion. Chinese Chemical Letters, 2024, 35(4): 109240-. doi: 10.1016/j.cclet.2023.109240
 - 
				[5]
				
Honghong Zhang , Zhen Wei , Derek Hao , Lin Jing , Yuxi Liu , Hongxing Dai , Weiqin Wei , Jiguang Deng . 非均相催化CO2与烃类协同催化转化的最新进展. Acta Physico-Chimica Sinica, 2025, 41(7): 100073-0. doi: 10.1016/j.actphy.2025.100073
 - 
				[6]
				
Jingyi Xie , Qianxi Lü , Weizhen Qiao , Chenyu Bu , Yusheng Zhang , Xuejun Zhai , Renqing Lü , Yongming Chai , Bin Dong . Enhancing Cobalt―Oxygen Bond to Stabilize Defective Co2MnO4 in Acidic Oxygen Evolution. Acta Physico-Chimica Sinica, 2024, 40(3): 2305021-0. doi: 10.3866/PKU.WHXB202305021
 - 
				[7]
				
Chengxiao Zhao , Zhaolin Li , Dongfang Wu , Xiaofei Yang . SBA-15 templated covalent triazine frameworks for boosted photocatalytic hydrogen production. Acta Physico-Chimica Sinica, 2026, 42(1): 100149-0. doi: 10.1016/j.actphy.2025.100149
 - 
				[8]
				
Xueqi Yang , Juntao Zhao , Jiawei Ye , Desen Zhou , Tingmin Di , Jun Zhang . 调节NNU-55(Fe)的d带中心以增强CO2吸附和光催化活性. Acta Physico-Chimica Sinica, 2025, 41(7): 100074-0. doi: 10.1016/j.actphy.2025.100074
 - 
				[9]
				
Hongyi Zhang , Zhihong Shi , Zhijun Zhang . A New Strategy for “De-formulized” Calculation of Dynamic Buffer Capacity in Analytical Chemistry Education. University Chemistry, 2024, 39(3): 390-394. doi: 10.3866/PKU.DXHX202309030
 - 
				[10]
				
Wenlong Wang , Wentao Hao , Lang He , Jia Qiao , Ning Li , Chaoqiu Chen , Yong Qin . Bandgap and adsorption engineering of carbon dots/TiO2 S-scheme heterojunctions for enhanced photocatalytic CO2 methanation. Acta Physico-Chimica Sinica, 2025, 41(9): 100116-0. doi: 10.1016/j.actphy.2025.100116
 - 
				[11]
				
Jie ZHAO , Sen LIU , Qikang YIN , Xiaoqing LU , Zhaojie WANG . Theoretical calculation of selective adsorption and separation of CO2 by alkali metal modified naphthalene/naphthalenediyne. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 515-522. doi: 10.11862/CJIC.20230385
 - 
				[12]
				
Zhijie Zhang , Xun Li , Huiling Tang , Junhao Wu , Chunxia Yao , Kui Li . Cs2CuBr4 perovskite quantum dots confined in mesoporous CuO framework as a p-n type S-scheme heterojunction for efficient CO2 photoconversion. Chinese Chemical Letters, 2024, 35(11): 109700-. doi: 10.1016/j.cclet.2024.109700
 - 
				[13]
				
Linhan Tian , Changsheng Lu . Discussion on Sextuple Bonding in Diatomic Motifs of Chromium Family Elements. University Chemistry, 2024, 39(8): 395-402. doi: 10.3866/PKU.DXHX202401056
 - 
				[14]
				
Hong Dong , Feng-Ming Zhang . Covalent organic frameworks for artificial photosynthetic diluted CO2 reduction. Chinese Journal of Structural Chemistry, 2024, 43(7): 100307-100307. doi: 10.1016/j.cjsc.2024.100307
 - 
				[15]
				
Ping Wang , Tianbao Zhang , Zhenxing Li . Reconstruction mechanism of Cu surface in CO2 reduction process. Chinese Journal of Structural Chemistry, 2024, 43(8): 100328-100328. doi: 10.1016/j.cjsc.2024.100328
 - 
				[16]
				
Muhammad Humayun , Mohamed Bououdina , Abbas Khan , Sajjad Ali , Chundong Wang . Designing single atom catalysts for exceptional electrochemical CO2 reduction. Chinese Journal of Structural Chemistry, 2024, 43(1): 100193-100193. doi: 10.1016/j.cjsc.2023.100193
 - 
				[17]
				
Hui Bian , Xinyi Yuan , Nan Zhang , Zhuo Xu , Juhong Lian , Ruibin Jiang , Junqing Yan , Deng Li , Shengzhong (Frank) Liu . Correlating vacancy-defect density with CO2 activation for promoted CO2 methanation over CsPbBr3 photocatalyst. Chinese Chemical Letters, 2025, 36(7): 111034-. doi: 10.1016/j.cclet.2025.111034
 - 
				[18]
				
Xiaofan ZHANG , Yu DUAN , Meijie SHI , Nan LU , Renhong LI , Xiaoqing YAN . Z-scheme Co3O4/BiOBr heterojunction for efficient photoreduction CO2 reduction. Chinese Journal of Inorganic Chemistry, 2025, 41(9): 1878-1888. doi: 10.11862/CJIC.20250079
 - 
				[19]
				
Wenlong LI , Xinyu JIA , Jie LING , Mengdan MA , Anning ZHOU . Photothermal catalytic CO2 hydrogenation over a Mg-doped In2O3-x catalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 919-929. doi: 10.11862/CJIC.20230421
 - 
				[20]
				
Linlu Bai , Wensen Li , Xiaoyu Chu , Haochun Yin , Yang Qu , Ekaterina Kozlova , Zhao-Di Yang , Liqiang Jing . Effects of nanosized Au on the interface of zinc phthalocyanine/TiO2 for CO2 photoreduction. Chinese Chemical Letters, 2025, 36(2): 109931-. doi: 10.1016/j.cclet.2024.109931
 
 - 
				[1]
				
 
Metrics
- PDF Downloads(1052)
 - Abstract views(2812)
 - HTML views(15)
 
 
Login In
	                    
	                    
	                    
	                    
DownLoad: