Citation: CHEN Xiao-Yun, LU Dong-Fang, HUANG Jin-Feng, LU Yan-Feng, ZHENG Jian-Qiang. Preparation and Properties of N-F Co-Doped TiO2 Photocatalyst with Wide Range Light Response and Multipore Structure from Ionic Liquid-Water Mixture Solvent[J]. Acta Physico-Chimica Sinica, ;2012, 28(01): 161-169. doi: 10.3866/PKU.WHXB201228161 shu

Preparation and Properties of N-F Co-Doped TiO2 Photocatalyst with Wide Range Light Response and Multipore Structure from Ionic Liquid-Water Mixture Solvent

  • Received Date: 16 August 2011
    Available Online: 25 October 2011

    Fund Project: 国家自然科学基金(31000269) (31000269) 福建省高等学校杰出青年科研人才培育计划(JA11072) (JA11072)福建省教育厅基金(JA10121)资助项目 (JA10121)

  • A yellow N-F co-doped TiO2 photocatalyst (TiONF) exhibited high activity over a wide light spectrum range and a multipore structure was prepared by a hydrolysis-precipitation method using an ionic liquid ([Bmim]PF6)-water mixture as the solvent and TiCl4 as the precursor. Photocatalytic activity was investigated by the photocatalytic degradation of phenol under ultraviolet (UV), artificial visible (Vis), and solar light irradiation. X-ray photoelectron spectroscopy (XPS), UV-Vis diffuse reflectance spectroscopy (DRS), transmission electron microscopy (TEM), X-ray diffraction (XRD), Fourier transform infrared (FTIR), spectroscopy, and N2 adsorption-desorption were used for catalyst characterization. The results show that TiONF synthesis in an ionic liquid-water mixture solvent with suitable N-F doping gives high activity under UV, Vis, and solar light irradiation, and the activities are higher than those obtained by synthesis in pure water. The ionic liquid-water mixture solvent leads to N and F being incorporated into the TiO2 lattice and N-F co-doping can increase the amount of surface OH- on TiO2. The new bandgap formed by N-F doping can induce a second adsorption edge (450-530 nm), which can be excited by Vis irradiation and induce Vis activity. N-F co-doping retards the phase transformation. In addition, an ionic liquid-water mixture as a solvent benefits the dispersion of TiO2, increases the SBET and reduces the particle size.
  • 加载中
    1. [1]

      (1) Yu, J. G.; Zhou, M. H.; Cheng, B.; Zhao, X. J. J. Mol. Catal. A-Chem. 2006, 246 (1-2), 176.

    2. [2]

      (2) Wawrzyniak, B.; Morawski, A.W. Appl. Catal. B-Environ. 2005, 62 (1-2), 150.

    3. [3]

      (3) Liu, S. X.; Chen, X. Y.; Chen, X. Chin. Chem. Lett. 2006, 17

    4. [4]

      (4) Mori, K.; Maki, K.; Kawasaki, S.; Yuan, S.; Yamashita, H. Chem. Eng. Sci. 2008, 63, 5066.  

    5. [5]

      (4) Mori, K.; Maki, K.; Kawasaki, S.; Yuan, S.; Yamashita, H. Chem. Eng. Sci. 2008, 63, 5066.

    6. [6]

      (5) Balek, V.; Li, D.; Subrt, J.; Vecerniková, E.; Hishitab, S.; Mitsuhashib, T.; Hanedab, H. J. Phys. Chem. Solid 2007, 68

    7. [7]

      (5-6), 770.

    8. [8]

      (7) Wu, Y. M.; Xing, M. Y.; Tian, B. Z.; Zhang, J. L.; Chen, F. Chem. Eng. J. 2010, 162, 710.  

    9. [9]

      (7) Wu, Y. M.; Xing, M. Y.; Tian, B. Z.; Zhang, J. L.; Chen, F. Chem. Eng. J. 2010, 162, 710.

    10. [10]

      (8) Chen. P.; Gu, M. Y.; Jin, Y. P. Progress in Chemistry 2005, 17

    11. [11]

      (1), 8. [程萍, 顾明元, 金燕苹. 化学进展, 2005, 17 (1), 8.]

    12. [12]

      (9) Tang, Y. C.; Huang, X. H.; Yu, H. Q.; Hu, C. Progress in Chemistry 2007, 19 (2-3), 225. [唐玉朝, 黄显怀, 俞汉青, 胡春. 化学进展, 2007, 19 (2-3), 225.]

    13. [13]

      (10) Lu,W. S.; Xiao, G. S.; Li, D. Z.; Fu, X. Z.;Wang, X. X. Chin. J. Inorg. Chem. 2005, 21 (10), 1495. [鲁文升, 肖光参, 李旦振, 付贤智, 王绪绪. 无机化学学报, 2005, 21 (10), 1495.]

    14. [14]

      (11) Ihara, T.; Miyoshi, M.; Iriyama, Y.; Matsumoto, O.; Sugihara, S. Appl. Catal. B 2003, 42 (4), 403.

    15. [15]

      (12) O, Regan, B.; Graetzel, M. Nature 1991, 353 (6346), 737.

    16. [16]

      (13) Nakamura, I.; Negishi, N.; Kutsuns, S.; Ihara, T.; Sugihara, S.; Takeuchi, K. J. Mol. Catal. A-Chem. 2000, 161 (1-2), 205.

    17. [17]

      (14) Ashia, R.; Ohwaki, T.; Ohwak, K.; Aoki, K.; Taga, Y. Science 2001, 293 (5528), 269.

    18. [18]

      (15) Hattori, A.; Tada, H. J. Sol-Gel. Sci. Technol. 2001, 22 (1-2), 47.

    19. [19]

      (17) Pelaez, M.; Cruz, A. A.; Stathatos, E.; Falaras, P.; Dionysiou, D. Catal. Today 2009, 144, 19.  

    20. [20]

      (17) Pelaez, M.; Cruz, A. A.; Stathatos, E.; Falaras, P.; Dionysiou, D. Catal. Today 2009, 144, 19.

    21. [21]

      (18) Lee, S. H.; Yamasue, E.; Ishihara, K. N.; Okumura, H. Appl. Catal. B-Environ. 2010, 93 (3-4), 217.

    22. [22]

      (19) Li, X. H.; Liu, S. X. Acta Phys. -Chim. Sin. 2008, 24 (11), 2019. [李晓辉, 刘守新. 物理化学学报, 2008, 24 (11), 2019.]

    23. [23]

      (20) Huang, D. G.; Liao, S. J.; Dang, Z. Acta. Chim. Sin. 2006, 64

    24. [24]

      (17), 1805. [黄冬根, 廖世军, 党志. 化学学报, 2006, 64

    25. [25]

      (17), 1805.]

    26. [26]

      (21) Li, D.; Haneda, H.; Hishita, S.; Ohashi, N.; Labhsetwar, N. K. J. Fluorine Chem. 2005, 126 (1), 69.

    27. [27]

      (23) Yoo, K. S.; Choi, H.; Dionysiou, D. D. Catal. Commun. 2005, 6, 259.  

    28. [28]

      (23) Yoo, K. S.; Choi, H.; Dionysiou, D. D. Catal. Commun. 2005, 6, 259.

    29. [29]

      (25) Alammar, T.; Birkner, A.; Shekhah, O.; Mudring, A. V. Mater. Chem. Phys. 2010, 120, 109.  

    30. [30]

      (26) Liu, H.; Liang, Y. G.; Hu, H. J.;Wang, M. Y. Solid State Sci. 2009, 11, 1655.  

    31. [31]

      (27) Yu, N.; ng, L.; Song, H. J.; Liu, Y.; Yin, D. H. J. Solid State Chem. 2007, 180, 799.  

    32. [32]

      (27) Yu, N.; ng, L.; Song, H. J.; Liu, Y.; Yin, D. H. J. Solid State Chem. 2007, 180, 799.

    33. [33]

      (28) Choi, E. H.; Hong, S. I.; Moon, D. J. Catal. Lett. 2008, 123

    34. [34]

      (30) Benesi, H. A. J . Phys . Chem. 1957, 61, 970.  

    35. [35]

      (29) Wang, Z. Z.; Zhu, G. M.; Chen, B. Q. Chem. Eng. 2007, 141 (6), l4. [王振中, 朱光明, 陈北强. 化学工程师, 2007, 141 (6), l4.]

    36. [36]

      (32) Li, Y. X.; Jiang, Y.; Peng, S. Q.; Jiang, F. Y. J. Hazard. Mater. 2010, 182, 90.  

    37. [37]

      (33) Ling, Q. C.; Sun, J Z.; Zhou, Q Y. Appl. Surf. Sci. 2008, 254, 3236.  

    38. [38]

      (34) Fox, M. A.; Dulay, M. T. Chem. Rev. 1993, 93, 341.  

    39. [39]

      (33) Ling, Q. C.; Sun, J Z.; Zhou, Q Y. Appl. Surf. Sci. 2008, 254, 3236.

    40. [40]

      (34) Fox, M. A.; Dulay, M. T. Chem. Rev. 1993, 93, 341.

    41. [41]

      (35) Hoffmann, M. R.; Martin, S. T.; Choi,W. Y.; Bahnemann, D.W. Chem. Rev. 1995, 95, 693.

    42. [42]

      (36) Su, Y. L.; Li, Y.; Du, Y. X.; Lei, L. C. Acta Phys. -Chim. Sin. 2011, 27 (4), 939. [苏雅玲, 李轶, 杜瑛珣, 雷乐成. 物理化学学报, 2011, 27 (4), 939.]

    43. [43]

      (37) Chen, X. Y.; Liu, S. X. Acta Phys. -Chim. Sin. 2007, 23 (5), 701. [陈孝云, 刘守新. 物理化学学报, 2007, 23 (5), 701.]

    44. [44]

      (40) He, X.; David, A. Angew. Chem. Int. Edit. 2002, 41, 214.  

  • 加载中
    1. [1]

      Bing LIUHuang ZHANGHongliang HANChangwen HUYinglei ZHANG . Visible light degradation of methylene blue from water by triangle Au@TiO2 mesoporous catalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 941-952. doi: 10.11862/CJIC.20230398

    2. [2]

      Qiang ZHAOZhinan GUOShuying LIJunli WANGZuopeng LIZhifang JIAKewei WANGYong GUO . Cu2O/Bi2MoO6 Z-type heterojunction: Construction and photocatalytic degradation properties. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 885-894. doi: 10.11862/CJIC.20230435

    3. [3]

      Hongye Bai Lihao Yu Jinfu Xu Xuliang Pang Yajie Bai Jianguo Cui Weiqiang Fan . Controllable Decoration of Ni-MOF on TiO2: Understanding the Role of Coordination State on Photoelectrochemical Performance. Chinese Journal of Structural Chemistry, 2023, 42(10): 100096-100096. doi: 10.1016/j.cjsc.2023.100096

    4. [4]

      Bo YANGGongxuan LÜJiantai MA . Nickel phosphide modified phosphorus doped gallium oxide for visible light photocatalytic water splitting to hydrogen. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 736-750. doi: 10.11862/CJIC.20230346

    5. [5]

      Maosen XuPengfei ZhuQinghong CaiMeichun BuChenghua ZhangHong WuYouzhou HeMin FuSiqi LiXingyan LiuIn-situ fabrication of TiO2/NH2−MIL-125(Ti) via MOF-driven strategy to promote efficient interfacial effects for enhancing photocatalytic NO removal activity. Chinese Chemical Letters, 2024, 35(10): 109524-. doi: 10.1016/j.cclet.2024.109524

    6. [6]

      Wei Zhong Dan Zheng Yuanxin Ou Aiyun Meng Yaorong Su . K原子掺杂高度面间结晶的g-C3N4光催化剂及其高效H2O2光合成. Acta Physico-Chimica Sinica, 2024, 40(11): 2406005-. doi: 10.3866/PKU.WHXB202406005

    7. [7]

      Yurong Tang Yunren Shi Yi Xu Bo Qin Yanqin Xu Yunfei Cai . Innovative Experiment and Course Transformation Practice of Visible-Light-Mediated Photocatalytic Synthesis of Isoquinolinone. University Chemistry, 2024, 39(5): 296-306. doi: 10.3866/PKU.DXHX202311087

    8. [8]

      Yi YANGShuang WANGWendan WANGLimiao CHEN . Photocatalytic CO2 reduction performance of Z-scheme Ag-Cu2O/BiVO4 photocatalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 895-906. doi: 10.11862/CJIC.20230434

    9. [9]

      Wenlong LIXinyu JIAJie LINGMengdan MAAnning ZHOU . Photothermal catalytic CO2 hydrogenation over a Mg-doped In2O3-x catalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 919-929. doi: 10.11862/CJIC.20230421

    10. [10]

      Zhen Yao Bing Lin Youping Tian Tao Li Wenhui Zhang Xiongwei Liu Wude Yang . Visible-Light-Mediated One-Pot Synthesis of Secondary Amines and Mechanistic Exploration. University Chemistry, 2024, 39(5): 201-208. doi: 10.3866/PKU.DXHX202311033

    11. [11]

      Kun WANGWenrui LIUPeng JIANGYuhang SONGLihua CHENZhao DENG . Hierarchical hollow structured BiOBr-Pt catalysts for photocatalytic CO2 reduction. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1270-1278. doi: 10.11862/CJIC.20240037

    12. [12]

      Jie Li Huida Qian Deyang Pan Wenjing Wang Daliang Zhu Zhongxue Fang . Efficient Synthesis of Anethaldehyde Induced by Visible Light. University Chemistry, 2024, 39(4): 343-350. doi: 10.3866/PKU.DXHX202310076

    13. [13]

      Qingtang ZHANGXiaoyu WUZheng WANGXiaomei WANG . Performance of nano Li2FeSiO4/C cathode material co-doped by potassium and chlorine ions. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1689-1696. doi: 10.11862/CJIC.20240115

    14. [14]

      Juntao Yan Liang Wei . 2D S-Scheme Heterojunction Photocatalyst. Acta Physico-Chimica Sinica, 2024, 40(10): 2312024-. doi: 10.3866/PKU.WHXB202312024

    15. [15]

      Yuanyin Cui Jinfeng Zhang Hailiang Chu Lixian Sun Kai Dai . Rational Design of Bismuth Based Photocatalysts for Solar Energy Conversion. Acta Physico-Chimica Sinica, 2024, 40(12): 2405016-. doi: 10.3866/PKU.WHXB202405016

    16. [16]

      Ruolin CHENGHaoran WANGJing RENYingying MAHuagen LIANG . Efficient photocatalytic CO2 cycloaddition over W18O49/NH2-UiO-66 composite catalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 523-532. doi: 10.11862/CJIC.20230349

    17. [17]

      Asif Hassan Raza Shumail Farhan Zhixian Yu Yan Wu . 用于高效制氢的双S型ZnS/ZnO/CdS异质结构光催化剂. Acta Physico-Chimica Sinica, 2024, 40(11): 2406020-. doi: 10.3866/PKU.WHXB202406020

    18. [18]

      Zhiquan Zhang Baker Rhimi Zheyang Liu Min Zhou Guowei Deng Wei Wei Liang Mao Huaming Li Zhifeng Jiang . Insights into the Development of Copper-based Photocatalysts for CO2 Conversion. Acta Physico-Chimica Sinica, 2024, 40(12): 2406029-. doi: 10.3866/PKU.WHXB202406029

    19. [19]

      Fanxin Kong Hongzhi Wang Huimei Duan . Inhibition effect of sulfation on Pt/TiO2 catalysts in methane combustion. Chinese Journal of Structural Chemistry, 2024, 43(5): 100287-100287. doi: 10.1016/j.cjsc.2024.100287

    20. [20]

      Wenjun Zheng . Application in Inorganic Synthesis of Ionic Liquids. University Chemistry, 2024, 39(8): 163-168. doi: 10.3866/PKU.DXHX202401020

Metrics
  • PDF Downloads(1848)
  • Abstract views(3193)
  • HTML views(5)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return