Citation: WU Yong-Quan, SHEN Tong, LU Xiu-Ming, ZHANG Ning, LAI Li-Shan, GAO Shuai. Solidification of Liquid Fe with Embedded Homogeneous Solid Fe Nanoparticles from Molecular Dynamics Simulations[J]. Acta Physico-Chimica Sinica, ;2013, 29(02): 245-249. doi: 10.3866/PKU.WHXB201212251 shu

Solidification of Liquid Fe with Embedded Homogeneous Solid Fe Nanoparticles from Molecular Dynamics Simulations

  • Received Date: 3 December 2012
    Available Online: 25 December 2012

    Fund Project: 国家重点基础研究发展计划(973)(2012CB722805) (973)(2012CB722805)国家自然科学基金(50504010, 50974083, 51174131) (50504010, 50974083, 51174131)国家自然科学基金钢铁联合基金(50774112) (50774112)上海市青年科技启明星计划(07QA4021)资助项目 (07QA4021)

  • Solidification processes of liquid Fe with embedded homogeneous solid nanoparticle whose radius ranges from 0.4 to 1.8 nm have been studied by molecular dynamics simulation adopting the Sutton-Chen potential. It was found that the particles whose radii exceed 0.82 nm can obviously decrease the critical undercooling (ΔT*) and induce solidification. The microstructural evolution during the solidification process is traced through the atom definition with cluster-type index method (CTIM-2). Results revealed that when the embedded particle induced solidification, the growth process of nucleus would proceed as a cross-nucleation between hcp and fcc structures, a little similar to the eutectic crystallization process. Moreover, the heredity effect attributed by embedded solid nanoparticle is clearly observed during the microstructural evolution.

  • 加载中
    1. [1]

      (1) Turnbull, D. Journal of Applied Physics 1950, 21, 1022.

    2. [2]

      (2) Hou, Z. Y.; Liu, R. S.; Liu, H. R.; Tian, Z. A.;Wang, X.; Zhou,Q. Y.; Chen, Z. H. Journal of Chemical Physics 2007, 127,174503.

    3. [3]

      (3) den Ouden, D.; Vermolen, F. J.; Zhao, L.; Vuik, C.; Sietsma, J.Computational Materials Science 2011, 50, 2397. doi: 10.1016/j.commatsci.2011.02.044

    4. [4]

      (4) Hsu, C. S.; Rahman, A. Journal of Chemical Physics 1979, 70,5234. doi: 10.1063/1.437316

    5. [5]

      (5) Shibuta, Y.;Watanabe, Y.; Suzuki, T. Chemical Physics Letters2009, 475, 264. doi: 10.1016/j.cplett.2009.05.051

    6. [6]

      (6) Hashibon, A.; Adler, J.; Finnis, M.W.; Kaplan,W. D.Computational Materials Science 2002, 24, 443. doi: 10.1016/S0927-0256(01)00265-8

    7. [7]

      (7) Cheng, J.W.; Zhang, X. M.;Wu, Y. Q.;Wang, X. L.; Zheng, S.B.; Jiang, G. C. Acta Physico-Chimica Sinica 2007, 23, 779.[程江伟, 张先明, 吴永全, 王秀丽, 郑少波, 蒋国昌. 物理化学学报, 2007, 23, 779.] doi: 10.3866/PKU.WHXB20070531

    8. [8]

      (8) Liu, Y. H.;Wu, Y. Q.; Shen, T.;Wang, Z. K.; Jiang, G. C. Acta Metallurgica Sinica 2010, 46, 172. [刘益虎, 吴永全, 沈通,王召柯, 蒋国昌. 金属学报, 2010, 46, 172.]

    9. [9]

      (9) Lai, L. S.;Wu, Y. Q.; Shen, T.; Zhang, N.; Gao, S. Acta Physico-Chimica Sinica 2012, 28, 1347. [赖莉珊, 吴永全,沈通, 张宁, 高帅. 物理化学学报, 2012, 28, 1347.]doi: 10.3866/PKU.WHXB201203301

    10. [10]

      (10) Allen, M. P.; Tildesley, D. J. Computer Simulation of Liquid;Oxford University: New York, 1987.

    11. [11]

      (11) Sutton, A. P.; Chen, J. Philosophical Magazine Letters 1990, 61,139. doi: 10.1080/09500839008206493

    12. [12]

      (12) Smith,W.; Forester, T. R. Journal of Molecular Graphics 1996,14, 136. doi: 10.1016/S0263-7855(96)00043-4

    13. [13]

      (13) Nose, S. Molecular Physics 1984, 52, 255. doi: 10.1080/00268978400101201

    14. [14]

      (14) Hoover,W. G. Physical Review A: General Physics 1985, 31,1695. doi: 10.1103/PhysRevA.31.1695

    15. [15]

      (15) Parrinello, M.; Rahman, A. Journal of Applied Physics 1981, 52,7182. doi: 10.1063/1.328693

    16. [16]

      (16) Parrinello, M.; Rahman, A. Journal of Chemical Physics 1982,76, 2662. doi: 10.1063/1.443248

    17. [17]

      (17) Liu, H. R.; Liu, R. S.; Zhang, A. L.; Hou, Z. Y.;Wang, X.; Tian,Z. A. Chinese Physics 2007, 16, 3747. doi: 10.1088/1009-1963/16/12/032

    18. [18]

      (18) Honeycutt, J. D.; Andersen, H. C. Journal of Physical Chemistry 1987, 91, 4950. doi: 10.1021/j100303a014

    19. [19]

      (19) Belonoshko, A. B.; Ahuja, R.; Eriksson, O.; Johansson, B.Physical Review B 2000, 61, 3838.

    20. [20]

      (20) Kirshenbaum, A. D.; Cahill, J. A. Transactions of Metallurgy Society 1962, 224, 816.

    21. [21]

      (21) Bai, X. M.; Li, M. Journal of Chemical Physics 2005, 122,224510

    22. [22]

      (22) Kurz,W.; Fisher, D. J. Fundamentals of Solidification; TransTech Publications: Durnten-Zurich, 1992.

    23. [23]

      (23) Desgranges, C.; Delhommelle, J. Journal of Physical Chemistry B 2007, 111, 1465. doi: 10.1021/jp067310+

    24. [24]

      (24) Desgranges, C.; Delhommelle, J. Journal of Physical Chemistry C 2009, 113, 3607. doi: 10.1021/jp8101546

    25. [25]

      (25) Pronk, S.; Frenkel, D. Journal of Chemical Physics 1999, 110,4589. doi: 10.1063/1.478339

    26. [26]

      (26) Li, H.; Li, Y. F.; Liew, K. M.; Zhang, J. X.; Liu, X. F.; Fan, R.H. Applied Physics Letters 2009, 95, 063106.

    27. [27]

      (27) Li, Y. F.; Yu, H. Q.; Li, H.; Liew, K. M.; Liu, X. F. Nano 2010,5, 361.


  • 加载中
    1. [1]

      Shule Liu . Application of SPC/E Water Model in Molecular Dynamics Teaching Experiments. University Chemistry, 2024, 39(4): 338-342. doi: 10.3866/PKU.DXHX202310029

    2. [2]

      Peng ZHOUXiao CAIQingxiang MAXu LIU . Effects of Cu doping on the structure and optical properties of Au11(dppf)4Cl2 nanocluster. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1254-1260. doi: 10.11862/CJIC.20240047

    3. [3]

      Xiaochen Zhang Fei Yu Jie Ma . 多角度数理模拟在电容去离子中的前沿应用. Acta Physico-Chimica Sinica, 2024, 40(11): 2311026-. doi: 10.3866/PKU.WHXB202311026

    4. [4]

      Yaling Chen . Basic Theory and Competitive Exam Analysis of Dynamic Isotope Effect. University Chemistry, 2024, 39(8): 403-410. doi: 10.3866/PKU.DXHX202311093

    5. [5]

      Jinfu Ma Hui Lu Jiandong Wu Zhongli Zou . Teaching Design of Electrochemical Principles Course Based on “Cognitive Laws”: Kinetics of Electron Transfer Steps. University Chemistry, 2024, 39(3): 174-177. doi: 10.3866/PKU.DXHX202309052

    6. [6]

      Yeyun Zhang Ling Fan Yanmei Wang Zhenfeng Shang . Development and Application of Kinetic Reaction Flasks in Physical Chemistry Experimental Teaching. University Chemistry, 2024, 39(4): 100-106. doi: 10.3866/PKU.DXHX202308044

    7. [7]

      Xiaohui Li Ze Zhang Jingyi Cui Juanjuan Yin . Advanced Exploration and Practice of Teaching in the Experimental Course of Chemical Engineering Thermodynamics under the “High Order, Innovative, and Challenging” Framework. University Chemistry, 2024, 39(7): 368-376. doi: 10.3866/PKU.DXHX202311027

    8. [8]

      Xuzhen Wang Xinkui Wang Dongxu Tian Wei Liu . Enhancing the Comprehensive Quality and Innovation Abilities of Graduate Students through a “Student-Centered, Dual Integration and Dual Drive” Teaching Model: A Case Study in the Course of Chemical Reaction Kinetics. University Chemistry, 2024, 39(6): 160-165. doi: 10.3866/PKU.DXHX202401074

    9. [9]

      Dexin Tan Limin Liang Baoyi Lv Huiwen Guan Haicheng Chen Yanli Wang . Exploring Reverse Teaching Practices in Physical Chemistry Experiment Courses: A Case Study on Chemical Reaction Kinetics. University Chemistry, 2024, 39(11): 79-86. doi: 10.12461/PKU.DXHX202403048

    10. [10]

      Yiying Yang Dongju Zhang . Elucidating the Concepts of Thermodynamic Control and Kinetic Control in Chemical Reactions through Theoretical Chemistry Calculations: A Computational Chemistry Experiment on the Diels-Alder Reaction. University Chemistry, 2024, 39(3): 327-335. doi: 10.3866/PKU.DXHX202309074

    11. [11]

      Yue Wu Jun Li Bo Zhang Yan Yang Haibo Li Xian-Xi Zhang . Research on Kinetic and Thermodynamic Transformations of Organic-Inorganic Hybrid Materials for Fluorescent Anti-Counterfeiting Application information: Introducing a Comprehensive Chemistry Experiment. University Chemistry, 2024, 39(6): 390-399. doi: 10.3866/PKU.DXHX202403028

    12. [12]

      You Wu Chang Cheng Kezhen Qi Bei Cheng Jianjun Zhang Jiaguo Yu Liuyang Zhang . ZnO/D-A共轭聚合物S型异质结高效光催化产H2O2及其电荷转移动力学研究. Acta Physico-Chimica Sinica, 2024, 40(11): 2406027-. doi: 10.3866/PKU.WHXB202406027

    13. [13]

      Yan Li Xinze Wang Xue Yao Shouyun Yu . Kinetic Resolution Enabled by Photoexcited Chiral Copper Complex-Mediated Alkene EZ Isomerization: A Comprehensive Chemistry Experiment for Undergraduate Students. University Chemistry, 2024, 39(5): 1-10. doi: 10.3866/PKU.DXHX202309053

    14. [14]

      Xiaxue Chen Yuxuan Yang Ruolin Yang Yizhu Wang Hongyun Liu . Adjustable Polychromatic Fluorescence: Investigating the Photoluminescent Properties of Copper Nanoclusters. University Chemistry, 2024, 39(9): 328-337. doi: 10.3866/PKU.DXHX202308019

    15. [15]

      Wenyan Dan Weijie Li Xiaogang Wang . The Technical Analysis of Visual Software ShelXle for Refinement of Small Molecular Crystal Structure. University Chemistry, 2024, 39(3): 63-69. doi: 10.3866/PKU.DXHX202302060

    16. [16]

      Yuhao SUNQingzhe DONGLei ZHAOXiaodan JIANGHailing GUOXianglong MENGYongmei GUO . Synthesis and antibacterial properties of silver-loaded sod-based zeolite. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 761-770. doi: 10.11862/CJIC.20230169

    17. [17]

      Cuiping Yang Huiping Ding Jinpeng Hou Kai Li Weiliang Tian . Reform and Exploration of “Comprehensive and Precise Process” Assessment in Chemical Engineering Principle Experimental Course. University Chemistry, 2024, 39(3): 178-190. doi: 10.3866/PKU.DXHX202309087

    18. [18]

      Jianmin Hao Ruifeng Wu Ying Wang Yijia Bai Xuechuan Gao Yuying Du . Reform and Practice of Physical Chemistry Course Based on Enhanced Process Assessment and Evaluation. University Chemistry, 2024, 39(8): 78-83. doi: 10.3866/PKU.DXHX202311103

    19. [19]

      Fang Niu Rong Li Qiaolan Zhang . Analysis of Gas-Solid Adsorption Behavior in Resistive Gas Sensing Process. University Chemistry, 2024, 39(8): 142-148. doi: 10.3866/PKU.DXHX202311102

    20. [20]

      Xinxue Li . The Application of Reverse Thinking in Teaching of Boiling Point Elevation and Freezing Point Depression of Dilute Solutions in General Chemistry. University Chemistry, 2024, 39(11): 359-364. doi: 10.3866/PKU.DXHX202401075

Metrics
  • PDF Downloads(641)
  • Abstract views(1217)
  • HTML views(8)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return