Citation: MENG Zhong-Hua, YANG Peng, ZHOU Ren-Xian. Influence of Ce/Cr Ratio on 2-CrOx Mixed Oxide Catalysts for the Catalytic Oxidation of 1,2-Dichloroethane[J]. Acta Physico-Chimica Sinica, ;2013, 29(02): 391-396. doi: 10.3866/PKU.WHXB201212072 shu

Influence of Ce/Cr Ratio on 2-CrOx Mixed Oxide Catalysts for the Catalytic Oxidation of 1,2-Dichloroethane

  • Received Date: 15 October 2012
    Available Online: 7 December 2012

    Fund Project: 国家自然科学基金(21177110) (21177110) 国家863 重大科研项目(2011AA03A406) (2011AA03A406)

  • CeO2, Cr2O3, and CeO2-CrOx mixed oxides with molar ratios of Ce to Cr of 9/1, 4/1, 2/1, 1/1, 1/2, 1/4, and 1/8 were prepared by coprecipitation. The catalytic performance of 1,2-dichloroethane (DCE) decomposition was evaluated on all the catalysts. The results indicate that CeO2-CrOx mixed oxides with different Ce/Cr molar ratios showed higher performance for the removal of DCE compared with pure CeO2. The CeO2-CrOx mixed oxide with Ce/Cr molar ratio of 2/1 exhibited the highest catalytic activity of the samples, generating only small amounts of chlorinated by-products during the decomposition of DCE. The selectivity for HCl decreased as the molar ratio of Ce to Cr decreased. The catalysts were characterized by N2 adsorption/desorption, X-ray diffraction (XRD), UV-Raman spectroscopy, hydrogen temperatureprogrammed reduction (H2-TPR), and ammonia temperature-programmed desorption (NH3-TPD) to study the effect of the Ce/Cr molar ratio on the physicochemical performance of the catalysts. An appropriate molar ratio of Ce to Cr formed a more stable Ce-Cr-O solid solution, which increased the mobility of reactive oxygen species, oxidative ability, surface acid content and the ratio of strong acidity, promoting the adsorption, activation and deep oxidation of DCE.

  • 加载中
    1. [1]

      (1) Li,W. B.; ng, H. Acta Phys. -Chim. Sin. 2010, 26 (4), 885.[黎维彬, 龚浩. 物理化学学报, 2010, 26 (4), 885.]doi: 10.3866/PKU.WHXB20100436

    2. [2]

      (2) de Rivas, B.; López-Fonseca, R.; Gutiérrez-Ortiz, M. Á.;Gutiérrez-Ortiz, J. I. Appl. Catal. B 2011, 101 (3-4), 317.doi: 10.1016/j.apcatb.2010.09.034

    3. [3]

      (3) Zhang, G. H.; Zhao, F. Z.; Ji, S. F.; Yin, F. X.; Li, C. Y. Chem. Ind. Eng. Prog. 2007, 26 (5), 624. [张广宏, 赵福真, 季生福,银凤翔, 李成岳. 化工进展, 2007, 26 (5), 624.]

    4. [4]

      (4) Li,W. B.;Wang, J. X.; ng, H. Catal. Today 2009, 148 (1-2),81. doi: 10.1016/j.cattod.2009.03.007

    5. [5]

      (5) nzález-Velasco, J. R.; Aranzabal, A.; Gutiérrez-Ortiz, J. I.;López-Fonseca, R.; Gutiérrez-Ortiz, M. Á. Appl. Catal. B 1998,19 (3-4), 189. doi: 10.1016/S0926-3373(98)00078-2

    6. [6]

      (6) Garetto, T. F.; Vignatti, C. I.; Borgna, A.; Monzón, A. Appl. Catal. B 2009, 87 (3-4), 211. doi: 10.1016/j.apcatb.2008.09.005

    7. [7]

      (7) Aranzabal, A.; nzález-Marcos, J. A.; Romero-Sáez, M.; nzález-Velasco, J. R.; Guillemot, M.; Magnoux, P. Appl. Catal. B 2009, 88 (3-4), 533. doi: 10.1016/j.apcatb.2008.10.007

    8. [8]

      (8) Zhao, B.; Li, G. F.; Ge, C. H.;Wang, Q. Y.; Zhou, R. X. Appl. Catal. B 2010, 508 (2), 500.

    9. [9]

      (9) Wang, C. H.; Lin, S. S. Appl. Catal. A 2004, 268 (1-2), 227.doi: 10.1016/j.apcata.2004.03.040

    10. [10]

      (10) de Rivas, B.; López-Fonseca, R.; Sampedro, C.; Gutiérrez-Ortiz, J. I. Appl. Catal. B 2009, 90(3-4), 545. doi: 10.1016/j.apcatb.2009.04.017

    11. [11]

      (11) de Rivas, B.; López-Fonseca, R.; nz-alez-Velasco, J. R.;Gutiérrez-Ortiz, J. I. J. Mol. Catal. A 2007, 278 (1-2), 181.doi: 10.1016/j.molcata.2007.09.006

    12. [12]

      (12) Gutiérrez-Ortiz, J. I.; de Rivas, B.; López-Fonseca, R.; nzalez-Velasco, J. R. Appl. Catal. A 2004, 269 (1-2), 147. doi: 10.1016/j.apcata.2004.04.014

    13. [13]

      (13) Wang, X.Y.; Kang, Q.; Li, D. Appl. Catal. B 2009, 86 (3-4),166. doi: 10.1016/j.apcatb.2008.08.009

    14. [14]

      (14) de Rivas, B.; Guillén-Hutado, N.; López-Fonseca, R.; Coloma-Pascual, F.; García-García, A.; Gutiérrez-Ortiz, J. I.; Bueno-López, A. Appl. Catal. B 2012, 121-122, 162.

    15. [15]

      (15) Ku?azyński, M.; van Ommen, J. G.; Trawczyński, J.;Walendziewski, J. Appl. Catal. B 2002, 36 (3), 239. doi: 10.1016/S0926-3373(01)00313-7

    16. [16]

      (16) Ma, R. H.; Hu, P. J.; Jin, L. Y.;Wang, Y. J.; Lu, J. Q.; Luo, M. F.Catal. Today 2011, 175 (1), 598. doi: 10.1016/j.cattod.2011.04.025

    17. [17]

      (17) Huang, Q. Q.; Meng, Z. H.; Zhou, R. X. Appl. Catal. B 2012,115-116, 179.

    18. [18]

      (18) Singh, P.; Hegde, M. S.; palakrishnan, J. Chem. Mater. 2008,20 (23), 7268. doi: 10.1021/cm802207a

    19. [19]

      (19) Shukla, R.; Bera, A. K.; Yusuf, S. M.; Deshpande, S. K.; Tyagi,A. K.; Hermes,W.; Eul, M.; Pöttgen, R. J. Phys. Chem. C 2009,113 (29), 12663; doi: 10.1021/jp903013u

    20. [20]

      (20) Wang, X.; Xie, Y. C. Appl. Catal. B 2001, 35 (2), 85. doi: 10.1016/S0926-3373(01)00235-1

    21. [21]

      (21) Pu, Z. Y.; Lu, J. Q.; Luo, M. F.; Xie, Y. L. J. Phys. Chem. C2007, 111 (50), 18695. doi: 10.1021/jp0759776

    22. [22]

      (22) Si, R.; Zhang, Y.W.; Li, S. J.; Lin, B. X.; Yan, C. H. J. Phys. Chem. B 2004, 108 (33), 12481. doi: 10.1021/jp048084b

    23. [23]

      (23) Vidal, H.; Bernal, S.; Kašpar, J.; Pijolat, M.; Perrichon, V.;Blanco, G.; Pintado, J. M.; Baker, R. T.; Colon, G.; Fally, F.Catal. Today 1999, 54 (1), 93. doi: 10.1016/S0920-5861(99)00171-6

    24. [24]

      (24) S?oczyński, J.; Janas, J.; Machej, T.; Rynkowski, J.; Stoch, J.Appl. Catal. B 2000, 24 (1), 45. doi: 10.1016/S0926-3373(99)00093-4

    25. [25]

      (25) Feijen-Jeurissen, M. M. R.; Jorna, J. J.; Nieuwenhuys, B. E.;Sinquin, G.; Petit, C.; Hindermann, J. P. Catal. Today 1999, 54(1), 65. doi: 10.1016/S0920-5861(99)00169-8


  • 加载中
    1. [1]

      Yongmei Liu Lisen Sun Zhen Huang Tao Tu . Curriculum-Based Ideological and Political Design for the Experiment of Methanol Oxidation to Formaldehyde Catalyzed by Electrolytic Silver. University Chemistry, 2024, 39(2): 67-71. doi: 10.3866/PKU.DXHX202308020

    2. [2]

      CCS Chemistry 综述推荐│绿色氧化新思路:光/电催化助力有机物高效升级

      . CCS Chemistry, 2025, 7(10.31635/ccschem.024.202405369): -.

    3. [3]

      Chuanming GUOKaiyang ZHANGYun WURui YAOQiang ZHAOJinping LIGuang LIU . Performance of MnO2-0.39IrOx composite oxides for water oxidation reaction in acidic media. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1135-1142. doi: 10.11862/CJIC.20230459

    4. [4]

      Yan KongWei WeiLekai XuChen Chen . Electrochemical Synthesis of Organonitrogen Compounds from N-integrated CO2 Reduction Reaction. Acta Physico-Chimica Sinica, 2024, 40(8): 2307049-0. doi: 10.3866/PKU.WHXB202307049

    5. [5]

      Yaping ZHANGTongchen WUYun ZHENGBizhou LIN . Z-scheme heterojunction β-Bi2O3 pillared CoAl layered double hydroxide nanohybrid: Fabrication and photocatalytic degradation property. Chinese Journal of Inorganic Chemistry, 2025, 41(3): 531-539. doi: 10.11862/CJIC.20240256

    6. [6]

      Ye WangRuixiang GeXiang LiuJing LiHaohong Duan . An Anion Leaching Strategy towards Metal Oxyhydroxides Synthesis for Electrocatalytic Oxidation of Glycerol. Acta Physico-Chimica Sinica, 2024, 40(7): 2307019-0. doi: 10.3866/PKU.WHXB202307019

    7. [7]

      Ping ZHANGChenchen ZHAOXiaoyun CUIBing XIEYihan LIUHaiyu LINJiale ZHANGYu'nan CHEN . Preparation and adsorption-photocatalytic performance of ZnAl@layered double oxides. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1965-1974. doi: 10.11862/CJIC.20240014

    8. [8]

      Shuang CaoBo ZhongChuanbiao BieBei ChengFeiyan Xu . Insights into Photocatalytic Mechanism of H2 Production Integrated with Organic Transformation over WO3/Zn0.5Cd0.5S S-Scheme Heterojunction. Acta Physico-Chimica Sinica, 2024, 40(5): 2307016-0. doi: 10.3866/PKU.WHXB202307016

    9. [9]

      Huafeng SHI . Construction of MnCoNi layered double hydroxide@Co-Ni-S amorphous hollow polyhedron composite with excellent electrocatalytic oxygen evolution performance. Chinese Journal of Inorganic Chemistry, 2025, 41(7): 1380-1386. doi: 10.11862/CJIC.20240378

    10. [10]

      Yuanyuan Ping Wangqing Kong . 光催化碳氢键官能团化合成1-苯基-1,2-乙二醇. University Chemistry, 2025, 40(6): 238-247. doi: 10.12461/PKU.DXHX202408092

    11. [11]

      Bizhu ShaoHuijun DongYunnan GongJianhua MeiFengshi CaiJinbiao LiuDichang ZhongTongbu Lu . Metal-Organic Framework-Derived Nickel Nanoparticles for Efficient CO2 Electroreduction in Wide Potential Windows. Acta Physico-Chimica Sinica, 2024, 40(4): 2305026-0. doi: 10.3866/PKU.WHXB202305026

    12. [12]

      Xin HanZhihao ChengJinfeng ZhangJie LiuCheng ZhongWenbin Hu . Design of Amorphous High-Entropy FeCoCrMnBS (Oxy) Hydroxides for Boosting Oxygen Evolution Reaction. Acta Physico-Chimica Sinica, 2025, 41(4): 2404023-0. doi: 10.3866/PKU.WHXB202404023

    13. [13]

      Yuying JIANGJia LUOZhan GAO . Development status and prospects of solid oxide cell high entropy electrode catalysts. Chinese Journal of Inorganic Chemistry, 2025, 41(9): 1719-1730. doi: 10.11862/CJIC.20250124

    14. [14]

      Lina GuoRuizhe LiChuang SunXiaoli LuoYiqiu ShiHong YuanShuxin OuyangTierui Zhang . Effect of Interlayer Anions in Layered Double Hydroxides on the Photothermocatalytic CO2 Methanation of Derived Ni-Al2O3 Catalysts. Acta Physico-Chimica Sinica, 2025, 41(1): 100002-0. doi: 10.3866/PKU.WHXB202309002

    15. [15]

      Yuanqing WangYusong PanHongwu ZhuYanlei XiangRong HanRun HuangChao DuChengling Pan . Enhanced Catalytic Activity of Bi2WO6 for Organic Pollutants Degradation under the Synergism between Advanced Oxidative Processes and Visible Light Irradiation. Acta Physico-Chimica Sinica, 2024, 40(4): 2304050-0. doi: 10.3866/PKU.WHXB202304050

    16. [16]

      Wang WangYucheng LiuShengli Chen . Use of NiFe Layered Double Hydroxide as Electrocatalyst in Oxygen Evolution Reaction: Catalytic Mechanisms, Electrode Design, and Durability. Acta Physico-Chimica Sinica, 2024, 40(2): 2303059-0. doi: 10.3866/PKU.WHXB202303059

    17. [17]

      Yongpo Zhang Xinfeng Li Yafei Song Mengyao Sun Congcong Yin Chunyan Gao Jinzhong Zhao . Synthesis of Chlorine-Bridged Binuclear Cu(I) Complexes Based on Conjugation-Driven Cu(II) Oxidized Secondary Amines. University Chemistry, 2024, 39(5): 44-51. doi: 10.3866/PKU.DXHX202309092

    18. [18]

      Ke LiChuang LiuJingping LiGuohong WangKai Wang . Architecting Inorganic/Organic S-Scheme Heterojunction of Bi4Ti3O12 Coupling with g-C3N4 for Photocatalytic H2O2 Production from Pure Water. Acta Physico-Chimica Sinica, 2024, 40(11): 2403009-0. doi: 10.3866/PKU.WHXB202403009

    19. [19]

      Hui-Ying ChenHao-Lin ZhuPei-Qin LiaoXiao-Ming Chen . Integration of Ru(Ⅱ)-Bipyridyl and Zinc(Ⅱ)-Porphyrin Moieties in a Metal-Organic Framework for Efficient Overall CO2 Photoreduction. Acta Physico-Chimica Sinica, 2024, 40(4): 2306046-0. doi: 10.3866/PKU.WHXB202306046

    20. [20]

      Shijie RenMingze GaoRui-Ting GaoLei Wang . Bimetallic Oxyhydroxide Cocatalyst Derived from CoFe MOF for Stable Solar Water Splitting. Acta Physico-Chimica Sinica, 2024, 40(7): 2307040-0. doi: 10.3866/PKU.WHXB202307040

Metrics
  • PDF Downloads(728)
  • Abstract views(1329)
  • HTML views(8)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return