Citation: ZHANG Long, HAN Jing-Jing, LI Jia-Jia, LIU Tian-Qing. Properties and Spreading Kinetics of Water-Based Cypermethrin Microemulsions[J]. Acta Physico-Chimica Sinica, ;2013, 29(02): 346-350. doi: 10.3866/PKU.WHXB201211302 shu

Properties and Spreading Kinetics of Water-Based Cypermethrin Microemulsions

  • Received Date: 16 September 2012
    Available Online: 30 November 2012

    Fund Project: 国家自然科学基金(20573091) (20573091)

  • Water-based cypermethrin microemulsions were prepared by adding oil to emulsified water, with ethyl butyrate as the solvent, TritonX-100 (TX-100) and sodium dodecyl benzene sulfonate (SDBS) as surfactants, and n-butyl alcohol (n-C4H9OH) as a co-surfactant. The structure and properties of the microemulsions were investigated by determining the phase diagram, and using negative-staining transmission electron microscopy, and conductivity, surface tension, dynamic light scattering, and contact angle measurements. The spreading kinetics of the microemulsions on the leaf surface of Youngfu wheat was also studied. The results showed that the cypermethrin microemulsions followed the oil-in-water model, and had a strong solubilizing effect on cypermethrin. The microemulsions showed a low contact angle, and low surface tension, and the droplet radius was about 45 nm. The kinetics for the spreading of the microemulsions on the leaf surface of Youngfu wheat fitted a second-order kinetic equation. The kinetic rate constants were 0.1090 (°)-1·min-1 (20℃) and 0.1572 (°)-1·min-1 (30℃), and the activation energy was 27.03 kJ·mol-1.

  • 加载中
    1. [1]

      (1) Wang, L. J.; Li, X. F.; Zhang, G. Y.; Dong, J. F.; Eastoe, J.J. Colloid Interface Sci. 2007, 314, 230. doi: 10.1016/j.jcis.2007.04.079

    2. [2]

      (2) Chen, F. L.;Wang, Y.; Zheng, F. N.;Wu, Y. T.; Liang,W. P.Colloids Surf. A 2000, 175, 257. doi: 10.1016/S0927-7757(00)00505-7

    3. [3]

      (3) Lee, H. J.; Shan, G.; Ahn, K. C.; Park, E. K.;Watanabe, T.; Gee,S. J.; Hammock, B. D. J. Agric. Food Chem. 2004, 52, 1039.doi: 10.1021/jf030519p

    4. [4]

      (4) Rosenheimer, M. S.; Dubowski, Y. J. Phys. Chem. C 2007, 111,11682. doi: 10.1021/jp072937t

    5. [5]

      (5) Nurettin, S.; Sultan, B.; Pinar, I. Colloids Surf. A 2011, 386, 16.doi: 10.1016/j.colsurfa.2011.06.023

    6. [6]

      (6) Liu,W. P.; Gan, J. J.; Lee, S.;Werner, I. J. Agric. Food Chem.2004, 52, 6233. doi: 10.1021/jf0490910

    7. [7]

      (7) Wang, Q.; Qiu, J.; Zhu,W.; Jia, G.; Li, J.; Bi, C.; Zhou, Z.Environ. Sci. Technol. 2006, 40, 721. doi: 10.1021/es052025+

    8. [8]

      (8) Qin, S. J.; Gan, J. J. J. Agric. Food Chem. 2007, 55, 5734. doi: 10.1021/jf0708894

    9. [9]

      (9) Sundaram, K. M. S.; Szeto, S. Y. J. Agric. Food Chem. 1984,32, 1138. doi: 10.1021/jf00125a052

    10. [10]

      (10) Schafer, R. B.; Pettigrove, V.; Rose, G.; Allinson, G.;Wightwick, A.; Shimeta, J.; Kühne, R.; Kefford, B. J. Environ. Sci. Technol. 2011, 45, 1665. doi: 10.1021/es103227q

    11. [11]

      (11) Sherma, J. Anal. Chem. 1995, 67, 1.

    12. [12]

      (12) Zhang, X.; Liu, J. J. Agric. Food Chem. 2011, 59, 1308. doi: 10.1021/jf1034459

    13. [13]

      (13) Clarens, A. F.; Zimmerman, J. B.; Keoleian, G. A.; Hayes, K. F.;Skerlos, S. J. Environ. Sci. Technol. 2008, 42, 8534. doi: 10.1021/es800791z

    14. [14]

      (14) Nichkova, M.; Fu, X.; Yang, Z.; Zhong, P.; Sanborn, J. R.;Chang, D.; Gee, S. J.; Hammock, B. D. J. Agric. Food Chem.2009, 57, 5673. doi: 10.1021/jf900652a

    15. [15]

      (15) Hartnik, T.; Styrishave, B. J. Agric. Food Chem. 2008, 56,11057. doi: 10.1021/jf8017904

    16. [16]

      (16) Guo, R.; Liu, T. Q.; Yu,W. L. Langmuir 1999, 15, 624.

    17. [17]

      (17) Liu, T. Q.; Song, L.; Gan, Y. Y.; Chen, L. H. Colloids Surf. A2008, 329, 198. doi: 10.1016/j.colsurfa.2008.07.009

    18. [18]

      (18) Qiao, Y.; Lin, Y. Y.;Wang, Y. J.; Li, Z. B.; Huang, J. B.Langmuir 2011, 27, 1718. doi: 10.1021/la104447d

    19. [19]

      (19) Peng, X. H.; Zheng, P. Z.; Ma, Y. M.; Yin, T. X.; An, X. Q.;Shen,W. G. Acta Phys. -Chim. Sin. 2011, 27, 1026. [彭旭红,郑佩珠, 马元明, 殷天翔, 安学勤, 沈伟国. 物理化学学报,2011, 27, 1026.] doi: 10.3866/PKU.WHXB20110503

    20. [20]

      (20) Pasandideh, F. M.; Qiao, Y. M.; Chandra, S.; Mostaghimi, J.Phys. Fluids 1996, 8, 650. doi: 10.1063/1.868850

    21. [21]

      (21) Ukiwe, C.; Kwok, D. Y. Langmuir 2005, 21, 666. doi: 10.1021/la0481288

    22. [22]

      (22) Vadillo, D. C.; Soucemarianadin, A.; Delattre, C.; Roux, D. C.D. Phys. Fluids 2009, 21, 122002. doi: 10.1063/1.3276259

    23. [23]

      (23) Lee, J. B.; Lee, S. H. Langmuir 2011, 27, 6565. doi: 10.1021/la104829x

    24. [24]

      (24) Svitova, T.; Hoffmann, H.; Hill, R. M. Langmuir 1996, 12,1712. doi: 10.1021/la9505172

    25. [25]

      (25) Guo, R.; Liu, T. Q. J. Disper. Sci. Technol. 1999, 20, 1327. doi: 10.1080/01932699908943856

    26. [26]

      (26) Liu, T. Q.; Zhang, Q. Q.; Fan, G. K.; Guo, R. Acta Chim. Sin.2000, 58, 840. [刘天晴, 张启清, 范国康, 郭荣. 化学学报,2000, 58, 840.]


  • 加载中
    1. [1]

      Qin Li Ziyao Jia Ye Chen Mingze Ma Lin Li Tao Huang . A Journey into the Enigmatic World of Pickering Emulsion: A Chemical Science Popularization Experiment. University Chemistry, 2024, 39(9): 311-318. doi: 10.3866/PKU.DXHX202306035

    2. [2]

      Chunai Dai Yongsheng Han Luting Yan Zhen Li Yingze Cao . Ideological and Political Design of Solid-liquid Contact Angle Measurement Experiment. University Chemistry, 2024, 39(2): 28-33. doi: 10.3866/PKU.DXHX202306065

    3. [3]

      Shule Liu . Application of SPC/E Water Model in Molecular Dynamics Teaching Experiments. University Chemistry, 2024, 39(4): 338-342. doi: 10.3866/PKU.DXHX202310029

    4. [4]

      Fangqi Yang . Teaching Practice and Reflection on Contact Angle Measurement Instrument in Material Chemistry Analysis. University Chemistry, 2025, 40(11): 397-401. doi: 10.12461/PKU.DXHX202412008

    5. [5]

      Yue ZhangBao LiLixin Wu . GO-Assisted Supramolecular Framework Membrane for High-Performance Separation of Nanosized Oil-in-Water Emulsions. Acta Physico-Chimica Sinica, 2024, 40(5): 2305038-0. doi: 10.3866/PKU.WHXB202305038

    6. [6]

      Yaling Chen . Basic Theory and Competitive Exam Analysis of Dynamic Isotope Effect. University Chemistry, 2024, 39(8): 403-410. doi: 10.3866/PKU.DXHX202311093

    7. [7]

      Jiayu Gu Siqi Wang Jun Ling . Kinetics of Living Copolymerization: A Brief Discussion. University Chemistry, 2025, 40(4): 100-107. doi: 10.12461/PKU.DXHX202406012

    8. [8]

      Jinfu Ma Hui Lu Jiandong Wu Zhongli Zou . Teaching Design of Electrochemical Principles Course Based on “Cognitive Laws”: Kinetics of Electron Transfer Steps. University Chemistry, 2024, 39(3): 174-177. doi: 10.3866/PKU.DXHX202309052

    9. [9]

      Yeyun Zhang Ling Fan Yanmei Wang Zhenfeng Shang . Development and Application of Kinetic Reaction Flasks in Physical Chemistry Experimental Teaching. University Chemistry, 2024, 39(4): 100-106. doi: 10.3866/PKU.DXHX202308044

    10. [10]

      Jiageng Li Putrama . 数值积分耦合非线性最小二乘法一步确定反应动力学参数. University Chemistry, 2025, 40(6): 364-370. doi: 10.12461/PKU.DXHX202407098

    11. [11]

      Wenwen Zhang Peichao Zhang Conghao Gai Xiaoyun Chai Yan Zou Qingjie Zhao . Unveiling Kinetics at Natural Abundance: 13C NMR Isotope Effect Experiments. University Chemistry, 2025, 40(10): 203-207. doi: 10.12461/PKU.DXHX202411076

    12. [12]

      Xuzhen Wang Xinkui Wang Dongxu Tian Wei Liu . Enhancing the Comprehensive Quality and Innovation Abilities of Graduate Students through a “Student-Centered, Dual Integration and Dual Drive” Teaching Model: A Case Study in the Course of Chemical Reaction Kinetics. University Chemistry, 2024, 39(6): 160-165. doi: 10.3866/PKU.DXHX202401074

    13. [13]

      Dexin Tan Limin Liang Baoyi Lv Huiwen Guan Haicheng Chen Yanli Wang . Exploring Reverse Teaching Practices in Physical Chemistry Experiment Courses: A Case Study on Chemical Reaction Kinetics. University Chemistry, 2024, 39(11): 79-86. doi: 10.12461/PKU.DXHX202403048

    14. [14]

      Jiajie CaiChang ChengBowen LiuJianjun ZhangChuanjia JiangBei Cheng . CdS/DBTSO-BDTO S-scheme photocatalyst for H2 production and its charge transfer dynamics. Acta Physico-Chimica Sinica, 2025, 41(8): 100084-0. doi: 10.1016/j.actphy.2025.100084

    15. [15]

      Shanghua LiMalin LiXiwen ChiXin YinZhaodi LuoJihong Yu . High-Stable Aqueous Zinc Metal Anodes Enabled by an Oriented ZnQ Zeolite Protective Layer with Facile Ion Migration Kinetics. Acta Physico-Chimica Sinica, 2025, 41(1): 100003-0. doi: 10.3866/PKU.WHXB202309003

    16. [16]

      Jichao XUMing HUXichang CHENChunhui WANGLeichen WANGLingyi ZHOUXing HEXiamin CHENGSu JING . Construction and hydrogen peroxide-activated chemodynamic activity of ferrocene?benzoselenadiazole conjugate. Chinese Journal of Inorganic Chemistry, 2025, 41(8): 1495-1504. doi: 10.11862/CJIC.20250144

    17. [17]

      Linlin Wu Yonghua Zhou Zhongbei Li Liu Deng Younian Liu Limiao Chen Jianhan Huang . Digital Education Promoting Applied Chemistry Comprehensive Experiments: A Case Study of Catalytic Oxidation of Hydrogen Chloride and Reaction Kinetics. University Chemistry, 2025, 40(9): 273-278. doi: 10.12461/PKU.DXHX202411018

    18. [18]

      Xinyu XuJiale LuBo SuJiayi ChenXiong ChenSibo Wang . Steering charge dynamics and surface reactivity for photocatalytic selective methane oxidation to ethane over Au/Ti-CeO2. Acta Physico-Chimica Sinica, 2025, 41(11): 100153-0. doi: 10.1016/j.actphy.2025.100153

    19. [19]

      Yiying Yang Dongju Zhang . Elucidating the Concepts of Thermodynamic Control and Kinetic Control in Chemical Reactions through Theoretical Chemistry Calculations: A Computational Chemistry Experiment on the Diels-Alder Reaction. University Chemistry, 2024, 39(3): 327-335. doi: 10.3866/PKU.DXHX202309074

    20. [20]

      Yue Wu Jun Li Bo Zhang Yan Yang Haibo Li Xian-Xi Zhang . Research on Kinetic and Thermodynamic Transformations of Organic-Inorganic Hybrid Materials for Fluorescent Anti-Counterfeiting Application information: Introducing a Comprehensive Chemistry Experiment. University Chemistry, 2024, 39(6): 390-399. doi: 10.3866/PKU.DXHX202403028

Metrics
  • PDF Downloads(645)
  • Abstract views(1195)
  • HTML views(21)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return