Citation: JIANG Li-Lin, LIU Wei-Long, SONG Yun-Fei, HE Xing, WANG Yang, WU Hong-Lin, YANG Yan-Qiang. Fluorescence and Raman Spectroscopic Characteristics of the Photo-Induced Electron Transfer of Coumarin 343 Dye-Sensitized TiO2 Nanoparticles[J]. Acta Physico-Chimica Sinica, ;2012, 28(12): 2953-2957. doi: 10.3866/PKU.WHXB20121127 shu

Fluorescence and Raman Spectroscopic Characteristics of the Photo-Induced Electron Transfer of Coumarin 343 Dye-Sensitized TiO2 Nanoparticles

  • Received Date: 3 July 2012
    Available Online: 31 August 2012

    Fund Project: 国家自然科学基金(20973050, 21173063, 21003033) (20973050, 21173063, 21003033)广西自然科学青年基金(2012GXNSFBA053012) (2012GXNSFBA053012)广西教育厅科研基金(200103YB140, 200807LX015) (200103YB140, 200807LX015)中国工程物理研究院科学与技术发展基金(2010B0101001) (2010B0101001)冲击波与爆轰物理重点实验室基金(9140C67130208ZS75)资助项目 (9140C67130208ZS75)

  • The fluorescence and Raman spectroscopic characteristics of the photo-induced electron transfer of Coumarin 343 (C343) dye-sensitized TiO2 nanoparticles have been investigated. The results indicate that the red-shift of the absorption spectrum peaks and the fluorescence spectrum maxima can be attributed to the photo-induced electron transfer from the excited state of the absorbed C343 dye molecules and the charge transfer complex (C343/TiO2) to the conduction band manifold of the TiO2 nanoparticles. Back electron transfer of the system was investigated by time resolved fluorescence spectroscopy and takes place in around τ1=31 ps. Raman spectroscopy of the C343 dye-sensitized TiO2 nanoparticles reveals that the carbon bond stretching vibrations and ring breathing motions of the absorbed C343 dye molecules at the interface significantly contribute to the ultrafast interface photoinduced electron transfer.

  • 加载中
    1. [1]

      (1) West,W.; Gilman, P. B., Jr. The Theory of the Photographic Process, 4th ed.; James, T. H. Ed.; New York: Macmillan, 1977;p 251.

    2. [2]

      (2) Nazeerudin, M. K.; Kay, A.; Rodicio, I.; Humphrey-Baker, R.;Müller, E.; Liska, P.; Vlachopoulos, N.; Grätzel, M. J. Am. Chem. Soc. 1993, 115, 6382. doi: 10.1021/ja00067a063

    3. [3]

      (3) Nitzan, A.; Ratner, M. A. Science 2003, 300, 1384. doi: 10.1126/science.1081572

    4. [4]

      (4) Duncan,W. R.; Prezhdo, O. V. Annu. Rev. Phys. Chem. 2007,58, 143. doi: 10.1146/annurev.physchem.58.052306.144054

    5. [5]

      (5) Heimer, T. A.; Heilweil, E. J. J. Phys. Chem. B 1997, 101,10990. doi: 10.1021/jp972560z

    6. [6]

      (6) Stier,W.; Prezhdo, O. V. J. Phys. Chem. B 2002, 106, 8047. doi: 10.1021/jp014267b

    7. [7]

      (7) O'Regan, B.; Grätzel, M. Nature 1991, 353, 737. doi: 10.1038/353737a0

    8. [8]

      (8) Nazeeruddin, M. K.; Péchy, P.; Renouard, T.; Zakeeruddin, S.M.; Humphry-Baker, R.; Comte, P.; 10 Liska, P.; Cevey, L.;Costa, E.; Shklover, V.; Spiccia, L.; Deacon, G. B.; Bignozzi, C.A.; Grätzel, M. J. Am. Chem. Soc. 2001, 123, 1613. doi: 10.1021/ja003299u

    9. [9]

      (9) Gao, F. F.;Wang, Y.; Shi, D.; Zhang, J.;Wang, M. K.; Jing, X.Y.; Humphry-Baker, R.;Wang, P.; Zakeeruddin, S. M.; Grätzel,M. J. Am. Chem. Soc. 2008, 130, 10720. doi: 10.1021/ja801942j

    10. [10]

      (10) Cao, Y. M.; Bai, Y.; Yu, Q. J.; Cheng, Y. M.; Liu, S.; Shi, D.;Gao, F. F.;Wang, P. J. Phys. Chem. C 2009, 113, 6290. doi: 10.1021/jp9006872

    11. [11]

      (11) Yella, A.; Lee, H.W.; Tsao, H. N.; Yi, C. Y.; Chandiran, A. K.;Nazeeruddin, M.; Diau, E.W.; Yeh, C. Y.; Zakeeruddin, S. M.;Grätzel, M. Science 2011, 334, 629. doi: 10.1126/science.1209688

    12. [12]

      (12) Tachibana, Y.; Moser, J. E.; Grätzel, M.; Klug, D. R.; Durrant, J.R. J. Phys. Chem. 1996, 100, 20056. doi: 10.1021/jp962227f

    13. [13]

      (13) Anderson, N. A.; Lian, T. Q. Annu. Rev. Phys. Chem. 2005, 5,491.

    14. [14]

      (14) Cheng, H.; Dong, J. Z.; Chao, H.; Yao, J. H.; Cao, Y. A. Acta Phys. -Chim. Sin. 2012, 28, 850. [程辉, 董江舟, 巢晖,姚江宏, 曹亚安. 物理化学学报, 2012, 28, 850.] doi: 10.3866/PKU.WHXB2012020111

    15. [15]

      (15) Xu,W.W.; Dai, S. Y.; Fang, X. Q.; Hu, L. H.; Kong, F, T.; Pan,X.;Wang, K. J. Acta Phys. Sin. 2005, 54, 5943. [徐炜炜, 戴松元, 方霞琴, 胡林华, 孔凡太, 潘旭, 王孔嘉. 物理学报, 2005,54, 5943.]

    16. [16]

      (16) Liu,W. Q.; Kou, D. X.; Hu, L. H.; Huang, Y.; Jiang, N. Q.; Dai,S. Y. Acta Phys. Sin. 2010, 59, 5141. [刘伟庆, 寇东星, 胡林华, 黄阳, 姜年权, 戴松元. 物理学报, 2010, 59, 5141.]

    17. [17]

      (17) Frontiera, R. R.; Dasgupta, J.; Mathies, R. A. J. Am. Chem. Soc.2009, 131, 15630. doi: 10.1021/ja907188b

    18. [18]

      (18) Kaczor, A.; Turnau, K.; Baransk, M. Analyst 2011, 136, 1109.

    19. [19]

      (19) Kukura, P.; McCamant, D.W.; Mathies, R. A. Annu. Rev. Phys. Chem. 2007, 58, 461. doi: 10.1146/annurev.physchem.58.032806.104456

    20. [20]

      (20) Kukura, P.; McCamant, D.W.; Yoon, S.;Wandschneider, D. B.;Mathies, R. A. Science 2005, 310, 1006. doi: 10.1126/science.1118379

    21. [21]

      (21) Huber, R.; Moser, J. E.; Grätzel, M.;Wachtveitl, J. J. Phys. Chem. B 2002, 106, 6494. doi: 10.1021/jp0155819

    22. [22]

      (22) Marcus, R. A.; Sutin, N. Biochimica et Biophysica Acta 1985,811, 265.

    23. [23]

      (23) Ramakrishna, G.; Das, A.; Ghosh, H. N. Langmuir 2004, 20,1430. doi: 10.1021/la035190g

    24. [24]

      (24) Ramakrishna, G.; Singh, A. K.; Palit, D. K.; Ghosh, H. N.J. Phys. Chem. B 2004, 108, 1701. doi: 10.1021/jp036701a

    25. [25]

      (25) Barzykin, A. V.; Tachiya, M. J. Phys. Chem. B 2002, 106, 4356.doi: 10.1021/jp012957+

    26. [26]

      (26) Ghosh, H. N.; Asbury, J. B.; Lian, T. Q. J. Phys. Chem. B 1998,102, 6482. doi: 10.1021/jp981806c

    27. [27]

      (27) Ramakrishna, G.; Ghosh, H. N. J. Phys. Chem. B 2001, 105,7000. doi: 10.1021/jp011291g

    28. [28]

      (28) Ghosh, H. N. J. Phys. Chem. B 1999, 103, 10382. doi: 10.1021/jp9918611

    29. [29]

      (29) Jiang, L. L.; Song, Y. F.; Liu,W. L.; Yu, G. Y.; He, X.;Wang, Y.;Wu, H. L.; Yang, Y. Q. Acta Phys. Sin. 2012, 61, 090505. [蒋礼林, 宋云飞, 刘伟龙, 于国洋, 何兴, 王阳, 吴红琳, 杨延强. 物理学报, 2012, 61, 090505.]

    30. [30]

      (30) Huber, R.; Sporlein, S.; Moser, J. E.; Grätzel, M.;Wachtveitl,J. J. Phys. Chem. B 2000, 104, 8995.

    31. [31]

      (31) Shoute, L. C. T.; Loppnowa, G. R. J. Chem. Phys. 2002, 117,842. doi: 10.1063/1.1483848

    32. [32]

      (32) Frisch, M. J.; Trucks, G.W.; Schlegel, H. B.; et al. Gaussian 03,Revision E.01; Gaussian Inc.:Wallingford, CT, 2004.


  • 加载中
    1. [1]

      Zhuoyan Lv Yangming Ding Leilei Kang Lin Li Xiao Yan Liu Aiqin Wang Tao Zhang . Light-Enhanced Direct Epoxidation of Propylene by Molecular Oxygen over CuOx/TiO2 Catalyst. Acta Physico-Chimica Sinica, 2025, 41(4): 100038-. doi: 10.3866/PKU.WHXB202408015

    2. [2]

      Chun-Lin Sun Yaole Jiang Yu Chen Rongjing Guo Yongwen Shen Xinping Hui Baoxin Zhang Xiaobo Pan . Construction, Performance Testing, and Practical Applications of a Home-Made Open Fluorescence Spectrometer. University Chemistry, 2024, 39(5): 287-295. doi: 10.3866/PKU.DXHX202311096

    3. [3]

      Jizhou Liu Chenbin Ai Chenrui Hu Bei Cheng Jianjun Zhang . 六氯锡酸铵促进钙钛矿太阳能电池界面电子转移及其飞秒瞬态吸收光谱研究. Acta Physico-Chimica Sinica, 2024, 40(11): 2402006-. doi: 10.3866/PKU.WHXB202402006

    4. [4]

      Yongming Guo Jie Li Chaoyong Liu . Green Improvement and Educational Design in the Synthesis and Characterization of Silver Nanoparticles. University Chemistry, 2024, 39(3): 258-265. doi: 10.3866/PKU.DXHX202309057

    5. [5]

      Lina Liu Xiaolan Wei Jianqiang Hu . Exploration of Subject-Oriented Undergraduate Comprehensive Chemistry Experimental Teaching Based on the “STS Concept”: Taking the Experiment of Gold Nanoparticles as an Example. University Chemistry, 2024, 39(10): 337-343. doi: 10.12461/PKU.DXHX202405112

    6. [6]

      Fanxin Kong Hongzhi Wang Huimei Duan . Inhibition effect of sulfation on Pt/TiO2 catalysts in methane combustion. Chinese Journal of Structural Chemistry, 2024, 43(5): 100287-100287. doi: 10.1016/j.cjsc.2024.100287

    7. [7]

      Zhiqiang WangYajie GaoTianjun WangWei ChenZefeng RenXueming YangChuanyao Zhou . Photocatalyzed oxidation of water on oxygen pretreated rutile TiO2(110). Chinese Chemical Letters, 2025, 36(4): 110602-. doi: 10.1016/j.cclet.2024.110602

    8. [8]

      Ruoxi Sun Yiqian Xu Shaoru Rong Chunmiao Han Hui Xu . The Enchanting Collision of Light and Time Magic: Exploring the Footprints of Long Afterglow Lifetime. University Chemistry, 2024, 39(5): 90-97. doi: 10.3866/PKU.DXHX202310001

    9. [9]

      Linlu BaiWensen LiXiaoyu ChuHaochun YinYang QuEkaterina KozlovaZhao-Di YangLiqiang Jing . Effects of nanosized Au on the interface of zinc phthalocyanine/TiO2 for CO2 photoreduction. Chinese Chemical Letters, 2025, 36(2): 109931-. doi: 10.1016/j.cclet.2024.109931

    10. [10]

      Jinfu Ma Hui Lu Jiandong Wu Zhongli Zou . Teaching Design of Electrochemical Principles Course Based on “Cognitive Laws”: Kinetics of Electron Transfer Steps. University Chemistry, 2024, 39(3): 174-177. doi: 10.3866/PKU.DXHX202309052

    11. [11]

      Lihua HUANGJian HUA . Denitration performance of HoCeMn/TiO2 catalysts prepared by co-precipitation and impregnation methods. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 629-645. doi: 10.11862/CJIC.20230315

    12. [12]

      Hongye Bai Lihao Yu Jinfu Xu Xuliang Pang Yajie Bai Jianguo Cui Weiqiang Fan . Controllable Decoration of Ni-MOF on TiO2: Understanding the Role of Coordination State on Photoelectrochemical Performance. Chinese Journal of Structural Chemistry, 2023, 42(10): 100096-100096. doi: 10.1016/j.cjsc.2023.100096

    13. [13]

      Wenhao WangGuangpu ZhangQiufeng WangFancang MengHongbin JiaWei JiangQingmin Ji . Hybrid nanoarchitectonics of TiO2/aramid nanofiber membranes with softness and durability for photocatalytic dye degradation. Chinese Chemical Letters, 2024, 35(7): 109193-. doi: 10.1016/j.cclet.2023.109193

    14. [14]

      Mengli Xu Zhenmin Xu Zhenfeng Bian . Achieving Ullmann coupling reaction via photothermal synergy with ultrafine Pd nanoclusters supported on mesoporous TiO2. Chinese Journal of Structural Chemistry, 2024, 43(7): 100305-100305. doi: 10.1016/j.cjsc.2024.100305

    15. [15]

      Fei ZHOUXiaolin JIA . Co3O4/TiO2 composite photocatalyst: Preparation and synergistic degradation performance of toluene. Chinese Journal of Inorganic Chemistry, 2024, 40(11): 2232-2240. doi: 10.11862/CJIC.20240236

    16. [16]

      Jiatong LiLinlin ZhangPeng HuangChengjun Ge . Carbon bridge effects regulate TiO2–acrylate fluoroboron coatings for efficient marine antifouling. Chinese Chemical Letters, 2025, 36(2): 109970-. doi: 10.1016/j.cclet.2024.109970

    17. [17]

      Bo YANGGongxuan LÜJiantai MA . Corrosion inhibition of nickel-cobalt-phosphide in water by coating TiO2 layer. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 365-384. doi: 10.11862/CJIC.20240063

    18. [18]

      Jiajia Li Xiangyu Zhang Zhihan Yuan Zhengyang Qian Jian Zhu . 3D Printing Based on Photo-Induced Reversible Addition-Fragmentation Chain Transfer Polymerization. University Chemistry, 2024, 39(5): 11-19. doi: 10.3866/PKU.DXHX202309073

    19. [19]

      Xingang KongYabei SuCuijuan XingWeijie ChengJianfeng HuangLifeng ZhangHaibo OuyangQi Feng . Facile synthesis of porous TiO2/SnO2 nanocomposite as lithium ion battery anode with enhanced cycling stability via nanoconfinement effect. Chinese Chemical Letters, 2024, 35(11): 109428-. doi: 10.1016/j.cclet.2023.109428

    20. [20]

      Min WANGDehua XINYaning SHIWenyao ZHUYuanqun ZHANGWei ZHANG . Construction and full-spectrum catalytic performance of multilevel Ag/Bi/nitrogen vacancy g-C3N4/Ti3C2Tx Schottky junction. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1123-1134. doi: 10.11862/CJIC.20230477

Metrics
  • PDF Downloads(689)
  • Abstract views(2299)
  • HTML views(70)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return