Citation: FAN Hai-Ming, ZHANG Yi-Nuo, ZHANG Jin, WANG Dong-Ying, GAO Jian-Bo, KANG Wan-Li, MENG Xiang-Can, ZHAO Jian, XU Hai. Dynamic Surface Adsorption Properties of Sodium Dodecyl Sulfate Aqueous Solution[J]. Acta Physico-Chimica Sinica, ;2013, 29(02): 351-357. doi: 10.3866/PKU.WHXB201211214 shu

Dynamic Surface Adsorption Properties of Sodium Dodecyl Sulfate Aqueous Solution

  • Received Date: 25 September 2012
    Available Online: 21 November 2012

    Fund Project: 建设工程(ts20070704) (ts20070704) 国家自然科学基金(51234007, 51104169) (51234007, 51104169) 山东省自然科学基金(ZR2010EZ006, ZR2010BQ003)与中国石油大学(华东)国家大学生创新创业训练计划(201210425011)资助项目 (ZR2010EZ006, ZR2010BQ003)与中国石油大学(华东)国家大学生创新创业训练计划(201210425011)

  • The dynamic surface adsorption properties of aqueous sodium dodecyl sulfate (SDS) solutions were investigated at different concentrations of NaCl using bubble pressure tensiometry MPTC. In the case of ionic surfactants, the existence of a diffuse electric double layer on the surface adsorption layer and around the micelle produces a surface charge. Here, we discuss the influence of the surface charge on the dynamic surface diffusion processes and the micelle properties. It was found that the SDS adsorption process occurred in the presence of a 5.5 kJ·mol-1 adsorption barrier (Ea) that was generated by the surface charge; this barrier significantly decreased the effective diffusion coefficient (Deff) of the dodecyl sulfate ions (DS-). The ratio of the effective diffusion coefficient to the monomer self-diffusion coefficient (D) (Deff/D) was only 0.013. This indicated that at the beginning, the adsorption of SDS followed the mixed kinetic-diffusion controlled model; this is different from the behavior observed for nonionic surfactants. The adsorption barrier was reduced when NaCl was added. Ea was less than 0.3 kJ·mol-1 after the addition of 80 mmol·L-1 of NaCl. This resulted in values of between 0.8 and 1.2 for Deff/D, which was consistent with the diffusion-controlled model that describes the behavior of nonionic surfactants. The characteristic constants for the micelle dissociation rate (k2) were determined from the dynamic surface tension of the SDS micelle solutions. The calculated k values decreased as the NaCl concentration was increased, which demonstrated the existence of surface charge on the SDS micelles; this surface charge increased the repulsive forces between the dodecyl sulfate ions, and promoted the dispersion of the micelles.

  • 加载中
    1. [1]

      (1) Rosen, M. J. Surfactant and Interfacial Phenomena; JohnWileyand Sons: New York, 1989.

    2. [2]

      (2) Aveyard, R.; Haydon, D. A. An Introduction to the Principles of Surface Chemistry; Cambridge Univ. Press: London, 1973.

    3. [3]

      (3) Myers, D. In Surfactant Science Series; Reiger, M. M., Rhein,L. D. Eds.; Marcal Dekker: New York, 1997; Vol. 68, pp 29-82.

    4. [4]

      (4) Zhao, F. L. Principles of Enhanced Oil Recovery; ChinaUniversity of Petroleum Press: Dongying, 2006; pp 1-2.[赵福麟. EOR原理. 东营: 石油大学出版社, 2006:1-2.]

    5. [5]

      (5) McClements, D. J. Food Emulsions: Principles, Practice and Technology; CRC Press: Boca Raton, Florida, 2005.

    6. [6]

      (6) Fan, H. M.; Han, F.; Liu, Z.; Qin, L.; Li, Z. C.; Liang, D. H.;Ke, F. Y.; Huang, J. B.; Fu, H. L. J. Colloid Interface Sci. 2008,321, 227.

    7. [7]

      (7) Han, X.; Cheng, X. H.;Wang, J.; Huang, J. B. Acta Phys. -Chim. Sin. 2012, 28, 146. [韩霞, 程新皓, 王江,黄建滨. 物理化学学报, 2012, 28, 146.] doi: 10.3866/PKU.WHXB201228146

    8. [8]

      (8) Valentini, J. E.; Thomas,W. R.; Sevenhuysen, P.; Jiang, T. S.;Lee, H. O.; Yi, L.; Yen, S. C. Ind. Eng. Chem. Res. 1991, 30,453. doi: 10.1021/ie00051a004

    9. [9]

      (9) Knoche, M.; Tamura, H.; Bukovac, M. J. J. Agric. Food Chem.1991, 39, 202. doi: 10.1021/jf00001a041

    10. [10]

      (10) Tang, X. L.; Dong, J. F.; Li, X. F. J. Colloid Interface Sci. 2008,325, 223. doi: 10.1016/j.jcis.2008.05.055

    11. [11]

      (11) Zhang, L.; Luo, L.; Zhao, S.; Xu, Z. C.; An, J. Y.; Yu, J. Y.J. Petro. Sci. Eng. 2004, 41, 189. doi: 10.1016/S0920-4105(03)00153-0

    12. [12]

      (12) Zhao, Z. K.; Li, Z. S.; Zhao, S.; Qiao,W. H.; Cheng, L. B.Colloids Surf. A: Physicochem. Eng. Aspects 2005, 259, 71.doi: 10.1016/j.colsurfa.2005.02.012

    13. [13]

      (13) Marinova, K. G.; Basheva, E. S.; Nenova, B.; Temelska, M.;Mirarefi, A.Y. Food Hydrocolloids 2009, 23, 1864. doi: 10.1016/j.foodhyd.2009.03.003

    14. [14]

      (14) Chang, C. H.; Franses, E. I. Colloids Surf. A: Physicochem. Eng. Aspects 1995, 100, 1. doi: 10.1016/0927-7757(94)03061-4

    15. [15]

      (15) Eastoe, J.; Dalton, J. S.; Rogueda, P. G. A.; Crooks, E. R.; Pitt,A. R.; Simister, E. A. J. Colloid Interface Sci. 1997, 188, 423.doi: 10.1006/jcis.1997.4778

    16. [16]

      (16) Ferrari, M.; Liggerieri, L.; Ravera, F. J. Phys. Chem. B 1998,102, 10521. doi: 10.1021/jp9827429

    17. [17]

      (17) Liggieri, L.; Ferrari, M.; Massa, A.; Francesca, F.; Ravera, F.Colloids Surf. A: Physicochem. Eng. Aspects 1999, 156, 455.doi: 10.1016/S0927-7757(99)00103-X

    18. [18]

      (18) Eastoe, J.; Dalton, J. S. Adv. Colloid Interface Sci. 2000, 85,103. doi: 10.1016/S0001-8686(99)00017-2

    19. [19]

      (19) Chatterjee, A.; Moulik, S. P.; Sanyal, S. K.; Mishra, B. K.; Puri,P. M. J. Phys. Chem. B 2001, 105, 12823. doi: 10.1021/jp0123029

    20. [20]

      (20) Ward, A. F. H.; Tordai, L. J. J. Chem. Phys. 1946, 14, 453. doi: 10.1063/1.1724167

    21. [21]

      (21) Zhao, G. X.; Zhu, B. Y. Principles of Surfactant Action; Chinalight Industry Press: Beijing, 2003, pp 119-122. [赵国玺,朱瑶. 表面活性剂作用原理. 北京: 中国轻工业出版社,2003: 119-122.]

    22. [22]

      (22) Kamenka, N.; Lindman, B.; Brun, B. Colloid Polym. Sci. 1974,252, 144. doi: 10.1007/BF01555539

    23. [23]

      (23) Ravera, F.; Liggieri, L.; Steinchen, A. J. Colloid Interface Sci.1993, 156, 109 doi: 10.1006/jcis.1993.1088

    24. [24]

      (24) Liggieri, L.; Ravera, F.; Passerone, A. Colloids Surf. A: Physicochem. Eng. Aspects 1996, 114, 351. doi: 10.1016/0927-7757(96)03650-3

    25. [25]

      (25) Noskov, B.A. Adv. Colloid Interface Sci. 2002, 95, 237. doi: 10.1016/S0001-8686(00)00085-3

    26. [26]

      (26) Joos, P.; Rillaerts, E. J. Phys. Chem. 1982, 86, 3471. doi: 10.1021/j100214a040

    27. [27]

      (27) Makievski, A. V.; Fainerman, V. B.; Joos, P. J. Colloid Interface Sci. 1994, 166, 6. doi: 10.1006/jcis.1994.1264

    28. [28]

      (28) Aniannson, E.;Wall, S. N.; Almgren, M.; Hoffmann, H.;Kielmann, I.; Ulbricht,W.; Zana, R.; Lang, J.; Tondre, C.J. Phys. Chem. 1976, 80, 905. doi: 10.1021/j100550a001

    29. [29]

      (29) Tondre, C.; Zana, R. J. Colloid Interface Sci. 1978, 66, 544. doi: 10.1016/0021-9797(78)90074-7

    30. [30]

      (30) Ulbricht,W.; Zana, R. Colloids Surf. A: Physicochem. Eng. Aspects 2001, 183 -185, 487.


  • 加载中
    1. [1]

      Ruilin Han Xiaoqi Yan . Comparison of Multiple Function Methods for Fitting Surface Tension and Concentration Curves. University Chemistry, 2024, 39(7): 381-385. doi: 10.3866/PKU.DXHX202311023

    2. [2]

      Honglian Liang Xiaozhe Kuang Fuping Wang Yu Chen . Exploration and Practice of Integrating Ideological and Political Education into Physical Chemistry: a Case on Surface Tension and Gibbs Free Energy. University Chemistry, 2024, 39(10): 433-440. doi: 10.12461/PKU.DXHX202405073

    3. [3]

      Yongmin Zhang Shuang Guo Mingyue Zhu Menghui Liu Sinong Li . Design and Improvement of Physicochemical Experiments Based on Problem-Oriented Learning: a Case Study of Liquid Surface Tension Measurement. University Chemistry, 2024, 39(2): 21-27. doi: 10.3866/PKU.DXHX202307026

    4. [4]

      Xinting XIONGZhiqiang XIONGPanlei XIAOXuliang NIEXiuying SONGXiuguang YI . Synthesis, crystal structures, Hirshfeld surface analysis, and antifungal activity of two complexes Na(Ⅰ)/Cd(Ⅱ) assembled by 5-bromo-2-hydroxybenzoic acid ligands. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1661-1670. doi: 10.11862/CJIC.20240145

    5. [5]

      Zizheng LUWanyi SUQin SHIHonghui PANChuanqi ZHAOChengfeng HUANGJinguo PENG . Surface state behavior of W doped BiVO4 photoanode for ciprofloxacin degradation. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 591-600. doi: 10.11862/CJIC.20230225

    6. [6]

      Xinlong WANGZhenguo CHENGGuo WANGXiaokuen ZHANGYong XIANGXinquan WANG . Enhancement of the fragile interface of high voltage LiCoO2 by surface gradient permeation of trace amounts of Mg/F. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 571-580. doi: 10.11862/CJIC.20230259

    7. [7]

      Weihan Zhang Menglu Wang Ankang Jia Wei Deng Shuxing Bai . 表面硫物种对钯-硫纳米片加氢性能的影响. Acta Physico-Chimica Sinica, 2024, 40(11): 2309043-. doi: 10.3866/PKU.WHXB202309043

    8. [8]

      Zhuomin Zhang Hanbing Huang Liangqiu Lin Jingsong Liu Gongke Li . Course Construction of Instrumental Analysis Experiment: Surface-Enhanced Raman Spectroscopy for Rapid Detection of Edible Pigments. University Chemistry, 2024, 39(2): 133-139. doi: 10.3866/PKU.DXHX202308034

    9. [9]

      Yukai Jiang Yihan Wang Yunkai Zhang Yunping Wei Ying Ma Na Du . Characterization and Phase Diagram of Surfactant Lyotropic Liquid Crystal. University Chemistry, 2024, 39(4): 114-118. doi: 10.3866/PKU.DXHX202309033

    10. [10]

      Lan Ma Cailu He Ziqi Liu Yaohan Yang Qingxia Ming Xue Luo Tianfeng He Liyun Zhang . Magical Surface Chemistry: Fabrication and Application of Oil-Water Separation Membranes. University Chemistry, 2024, 39(5): 218-227. doi: 10.3866/PKU.DXHX202311046

    11. [11]

      Zhaomei LIUWenshi ZHONGJiaxin LIGengshen HU . Preparation of nitrogen-doped porous carbons with ultra-high surface areas for high-performance supercapacitors. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 677-685. doi: 10.11862/CJIC.20230404

    12. [12]

      Congying Lu Fei Zhong Zhenyu Yuan Shuaibing Li Jiayao Li Jiewen Liu Xianyang Hu Liqun Sun Rui Li Meijuan Hu . Experimental Improvement of Surfactant Interface Chemistry: An Integrated Design for the Fusion of Experiment and Simulation. University Chemistry, 2024, 39(3): 283-293. doi: 10.3866/PKU.DXHX202308097

    13. [13]

      Xinyu ZENGGuhua TANGJianming OUYANG . Inhibitory effect of Desmodium styracifolium polysaccharides with different content of carboxyl groups on the growth, aggregation and cell adhesion of calcium oxalate crystals. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1563-1576. doi: 10.11862/CJIC.20230374

    14. [14]

      Liang MAHonghua ZHANGWeilu ZHENGAoqi YOUZhiyong OUYANGJunjiang CAO . Construction of highly ordered ZIF-8/Au nanocomposite structure arrays and application of surface-enhanced Raman spectroscopy. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1743-1754. doi: 10.11862/CJIC.20240075

    15. [15]

      Yangrui Xu Yewei Ren Xinlin Liu Hongping Li Ziyang Lu . 具有高传质和亲和表面的NH2-UIO-66基疏水多孔液体用于增强CO2光还原. Acta Physico-Chimica Sinica, 2024, 40(11): 2403032-. doi: 10.3866/PKU.WHXB202403032

    16. [16]

      Chunai Dai Yongsheng Han Luting Yan Zhen Li Yingze Cao . Preparation of Superhydrophobic Surfaces and Their Application in Oily Wastewater Treatment: Design of a Comprehensive Physical Chemistry Innovation Experiment. University Chemistry, 2024, 39(2): 34-40. doi: 10.3866/PKU.DXHX202307081

    17. [17]

      Yanhui Sun Junmin Nan Guozheng Ma Xiaoxi Zuo Guoliang Li Xiaoming Lin . Exploration and Teaching Practice of Ideological and Political Elements in Interface Physical Chemistry: Taking “Additional Pressure on Curved Surfaces” as an Teaching Example. University Chemistry, 2024, 39(11): 20-27. doi: 10.3866/PKU.DXHX202402023

    18. [18]

      Cheng PENGJianwei WEIYating CHENNan HUHui ZENG . First principles investigation about interference effects of electronic and optical properties of inorganic and lead-free perovskite Cs3Bi2X9 (X=Cl, Br, I). Chinese Journal of Inorganic Chemistry, 2024, 40(3): 555-560. doi: 10.11862/CJIC.20230282

    19. [19]

      Heng Chen Longhui Nie Kai Xu Yiqiong Yang Caihong Fang . 两步焙烧法制备大比表面积和结晶性增强超薄g-C3N4纳米片及其高效光催化产H2O2. Acta Physico-Chimica Sinica, 2024, 40(11): 2406019-. doi: 10.3866/PKU.WHXB202406019

    20. [20]

      Liyang ZHANGDongdong YANGNing LIYuanyu YANGQi MA . Crystal structures, luminescent properties and Hirshfeld surface analyses of three cadmium(Ⅱ) complexes based on 2-(3-(pyridin-2-yl)-1H-pyrazol-1-yl)benzoate. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1943-1952. doi: 10.11862/CJIC.20240079

Metrics
  • PDF Downloads(895)
  • Abstract views(1568)
  • HTML views(67)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return