Citation: HU Ying-Ying, HU Zhong-Ai, ZHANG Ya-Jun, LU Ai-Lian, XU Huan, ZHANG Zi-Yu, YANG Yu-Ying, LI Li, WU Hong-Ying. Synthesis and Electrochemical Characterization of RuO2·xH2O/Graphite Nanosheet Composite Array Electrodes for Supercapacitors[J]. Acta Physico-Chimica Sinica, ;2013, 29(02): 305-310. doi: 10.3866/PKU.WHXB201211201
-
We used electrochemical exfoliation to construct graphite nanosheet (GNS) arrays, in which the varying number of nanosheet layers were parallel to each other and perpendicular to the carbon substrate. Hydrous ruthenium oxide (RuO2·xH2O) was then loaded directly on the surface of nanosheets using cathodic reduction electrodeposition, resulting in the formation of RuO2·xH2O/GNS composite array electrodes. Electrochemical measurements showed that the composite array electrodes exhibited excellent capacitive behaviors, and achieved specific capacitance values as high as 4226 F·m-2 in the potential window up to 0.9 V, with a scan rate of 5 mV·s-1 in 0.5 mol·L-1 H2SO4 solution. The RuO2·xH2O/GNS composite array electrodes showed od cycling abilities, and maintained 94.18% of their maximum performance after 20000 cycles.
-
Keywords:
-
Supercapacitor
, - Graphite nanosheet,
- RuO2,
- Electrodeposition,
- Array electrode
-
-
-
[1]
(1) Conway, B. E. Electrochem. Soc. 1991, 138, 1539. doi: 10.1149/1.2085829
-
[2]
(2) Mayer, S. T.; Pekala, R.W.; Kaschmitter, J. L. Electrochem. Soc. 1993, 140, 446. doi: 10.1149/1.2221066
-
[3]
(3) Ishikawa, M.; Morita, M.; Ihara, M.; Matsuda, Y. Electrochem. Soc. 1994, 141, 1730. doi: 10.1149/1.2054995
-
[4]
(4) Liu, Y.; Zhao,W.W.; Zhang, X. G. Electrochim. Acta 2008, 53,3296. doi: 10.1016/j.electacta.2007.11.022
-
[5]
(5) Naoi, K.; Simon, P. Electrochem. Soc. 2008, 7, 34.
-
[6]
(6) Zheng, J. P.; Cygan, P. J.; Jow, T. R. Electrochem. Soc. 1995,142, 2699. doi: 10.1149/1.2050077
-
[7]
(7) McKeown, D. A.; Hagans, P. L.; Carette, L. P. L.; Russell, A. E.;Swider, K. E.; Rolison, D. R. J. Phys. Chem. B 1999, 103, 4825.doi: 10.1021/jp990096n
-
[8]
(8) Liu, X. M.; Zhang, X. G. Electrochim. Acta 2004, 49, 229. doi: 10.1016/j.electacta.2003.08.005
-
[9]
(9) Wang, C. C.; Hu, C. C. Electrochem. Soc. 2005, 152, A370.
-
[10]
(10) Jeong, Y. U.; Manthiram, A. Electrochem. Soc. 2001, 148, A189.
-
[11]
(11) Wang, Y. G.; Zhang, X. G. Electrochim. Acta 2004, 49, 1957.doi: 10.1016/j.electacta.2003.12.023
-
[12]
(12) Hu, C. C.; Chen,W. C.; Chang, K. H. Electrochem. Soc. 2004,151, A281.
-
[13]
(13) Shen, C. F.; Zheng, M. B.; Xue, L. P.; Li, N.W.; Lü, H. L.;Zhang, S. T.; Cao, J. M. Chin. J. Inorg. Chem. 2011, 3, 27.[沈辰飞, 郑明波, 薛露平, 李念武, 吕洪岭, 张松涛, 曹洁明.无机化学学报, 2011, 3, 27.]
-
[14]
(14) Bi, R. R.;Wu, X. L.; Cao, F. F.; Jiang, L. Y.; Guo, Y. G.;Wan, L.J. Phys. Chem. C 2010, 114, 2448. doi: 10.1021/jp9116563
-
[15]
(15) Su, Y. F.;Wu, F.; Bao, L. Y.; Yang, Z. H. New Carbon Materials2007, 22, 53. doi: 10.1016/S1872-5805(07)60007-9
-
[16]
(16) Li, J.;Wang, X. Y.; Huang, Q. H.; Dai, C. L.; Gamboa, S.;Sebastian, P. J. Appl. Electrochem. 2007, 37, 1127.
-
[17]
(17) Paek, S. M.; Yoo, E. J.; Honma, I. Nano Letters 2009, 9, 72. doi: 10.1021/nl802484w
-
[18]
(18) Nethravathi, C.; Rajamathi, J. T.; Ravishankar, N.; Shivakumara,C.; Rajamathi, M. Langmuir 2008, 24, 8240. doi: 10.1021/la8000027
-
[19]
(19) Gujar, T. P.; Kim,W. Y.; Puspitasari, I.; Jung, K. D.; Joo, O. S.Int. J. Electrochem. Sci. 2007, 2, 662.
-
[20]
(20) Sun, X. M.; Li, Y. D. Angew. Chem. Int. Edit. 2004, 43, 597.
-
[21]
(21) Lee, S. H.; Seo, S. D.; Jin, Y. H.; Shim, H.W.; Kim, D.W.Electrochem. Commun. 2010, 12, 1419. doi: 10.1016/j.elecom.2010.07.036
-
[22]
(22) Liu, N.; Luo, F.;Wu, H. X.; Liu, Y. H.; Zhang, C.; Chen, J. Adv. Funct. Mater. 2008, 18, 1518.
-
[23]
(23) Lang, X. Y.; Hirata, A.; Fujita, T.; Chen, M.W. Nature Nanotechnology 2011, 6, 232. doi: 10.1038/nnano.2011.13
-
[24]
(24) Pang, S. C.; Anderdson, M. A.; Chapman, T.W. Electrochem. Soc. 2000, 147, 444. doi: 10.1149/1.1393216
-
[1]
-
-
[1]
Yanhui XUE , Shaofei CHAO , Man XU , Qiong WU , Fufa WU , Sufyan Javed Muhammad . Construction of high energy density hexagonal hole MXene aqueous supercapacitor by vacancy defect control strategy. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1640-1652. doi: 10.11862/CJIC.20240183
-
[2]
Jin CHANG . Supercapacitor performance and first-principles calculation study of Co-doping Ni(OH)2. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1697-1707. doi: 10.11862/CJIC.20240108
-
[3]
Zhaomei LIU , Wenshi ZHONG , Jiaxin LI , Gengshen HU . Preparation of nitrogen-doped porous carbons with ultra-high surface areas for high-performance supercapacitors. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 677-685. doi: 10.11862/CJIC.20230404
-
[4]
Jiahong ZHENG , Jingyun YANG . Preparation and electrochemical properties of hollow dodecahedral CoNi2S4 supported by MnO2 nanowires. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1881-1891. doi: 10.11862/CJIC.20240170
-
[5]
Jiao CHEN , Yi LI , Yi XIE , Dandan DIAO , Qiang XIAO . Vapor-phase transport of MFI nanosheets for the fabrication of ultrathin b-axis oriented zeolite membranes. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 507-514. doi: 10.11862/CJIC.20230403
-
[6]
Hao BAI , Weizhi JI , Jinyan CHEN , Hongji LI , Mingji LI . Preparation of Cu2O/Cu-vertical graphene microelectrode and detection of uric acid/electroencephalogram. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1309-1319. doi: 10.11862/CJIC.20240001
-
[7]
Xiaomei Ning , Liang Zhan , Xiaosong Zhou , Jin Luo , Xunfu Zhou , Cuifen Luo . Preparation and Electro-Oxidation Performance of PtBi Supported on Carbon Cloth: A Recommended Comprehensive Chemical Experiment. University Chemistry, 2024, 39(11): 217-224. doi: 10.3866/PKU.DXHX202401085
-
[8]
Endong YANG , Haoze TIAN , Ke ZHANG , Yongbing LOU . Efficient oxygen evolution reaction of CuCo2O4/NiFe-layered bimetallic hydroxide core-shell nanoflower sphere arrays. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 930-940. doi: 10.11862/CJIC.20230369
-
[9]
Wen LUO , Lin JIN , Palanisamy Kannan , Jinle HOU , Peng HUO , Jinzhong YAO , Peng WANG . Preparation of high-performance supercapacitor based on bimetallic high nuclearity titanium-oxo-cluster based electrodes. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 782-790. doi: 10.11862/CJIC.20230418
-
[10]
Kuaibing Wang , Honglin Zhang , Wenjie Lu , Weihua Zhang . Experimental Design and Practice for Recycling and Nickel Content Detection from Waste Nickel-Metal Hydride Batteries. University Chemistry, 2024, 39(11): 335-341. doi: 10.12461/PKU.DXHX202403084
-
[11]
Jiahong ZHENG , Jiajun SHEN , Xin BAI . Preparation and electrochemical properties of nickel foam loaded NiMoO4/NiMoS4 composites. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 581-590. doi: 10.11862/CJIC.20230253
-
[12]
Shicheng Yan . Experimental Teaching Design for the Integration of Scientific Research and Teaching: A Case Study on Organic Electrooxidation. University Chemistry, 2024, 39(11): 350-358. doi: 10.12461/PKU.DXHX202408036
-
[13]
Zhenlin Zhou , Siyuan Chen , Yi Liu , Chengguo Hu , Faqiong Zhao . A New Program of Voltammetry Experiment Teaching Based on Laser-Scribed Graphene Electrode. University Chemistry, 2024, 39(2): 358-370. doi: 10.3866/PKU.DXHX202308049
-
[14]
Tong Zhou , Jun Li , Zitian Wen , Yitian Chen , Hailing Li , Zhonghong Gao , Wenyun Wang , Fang Liu , Qing Feng , Zhen Li , Jinyi Yang , Min Liu , Wei Qi . Experiment Improvement of “Redox Reaction and Electrode Potential” Based on the New Medical Concept. University Chemistry, 2024, 39(8): 276-281. doi: 10.3866/PKU.DXHX202401005
-
[15]
Ji-Quan Liu , Huilin Guo , Ying Yang , Xiaohui Guo . Calculation and Discussion of Electrode Potentials in Redox Reactions of Water. University Chemistry, 2024, 39(8): 351-358. doi: 10.3866/PKU.DXHX202401031
-
[16]
Yunting Shang , Yue Dai , Jianxin Zhang , Nan Zhu , Yan Su . Something about RGO (Reduced Graphene Oxide). University Chemistry, 2024, 39(9): 273-278. doi: 10.3866/PKU.DXHX202306050
-
[17]
Zhihuan XU , Qing KANG , Yuzhen LONG , Qian YUAN , Cidong LIU , Xin LI , Genghuai TANG , Yuqing LIAO . Effect of graphene oxide concentration on the electrochemical properties of reduced graphene oxide/ZnS. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1329-1336. doi: 10.11862/CJIC.20230447
-
[18]
Liang MA , Honghua ZHANG , Weilu ZHENG , Aoqi YOU , Zhiyong OUYANG , Junjiang CAO . Construction of highly ordered ZIF-8/Au nanocomposite structure arrays and application of surface-enhanced Raman spectroscopy. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1743-1754. doi: 10.11862/CJIC.20240075
-
[19]
Zhuo WANG , Junshan ZHANG , Shaoyan YANG , Lingyan ZHOU , Yedi LI , Yuanpei LAN . Preparation and photocatalytic performance of CeO2-reduced graphene oxide by thermal decomposition. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1708-1718. doi: 10.11862/CJIC.20240067
-
[20]
Qi Li , Pingan Li , Zetong Liu , Jiahui Zhang , Hao Zhang , Weilai Yu , Xianluo Hu . Fabricating Micro/Nanostructured Separators and Electrode Materials by Coaxial Electrospinning for Lithium-Ion Batteries: From Fundamentals to Applications. Acta Physico-Chimica Sinica, 2024, 40(10): 2311030-. doi: 10.3866/PKU.WHXB202311030
-
[1]
Metrics
- PDF Downloads(1296)
- Abstract views(1330)
- HTML views(10)