Citation: LI Li-Xiang, TAO Jing, GENG Xin, AN Bai-Gang. Preparation and Supercapacitor Performance of Nitrogen-Doped Carbon Nanotubes from Polyaniline Modification[J]. Acta Physico-Chimica Sinica, ;2013, 29(01): 111-116. doi: 10.3866/PKU.WHXB201211091 shu

Preparation and Supercapacitor Performance of Nitrogen-Doped Carbon Nanotubes from Polyaniline Modification

  • Received Date: 6 August 2012
    Available Online: 9 November 2012

    Fund Project: 国家自然科学基金(51102126) (51102126) 教育部留学回国基金(2011508) (2011508) 辽宁省高等学校杰出青年学者成长计划(LJQ2011024, LJQ2012026) (LJQ2011024, LJQ2012026)辽宁省教育厅基金(L2010197)资助项目 (L2010197)

  • Nitrogen-doped carbon nanotubes (NCNTs) were prepared by carbonization of polyanilinecoated CNTs that were synthesized by in-situ polymerization of aniline on the CNT surface. The laser Raman spectroscopy, transmission electron microscope (TEM), and X-ray photoelectron spectroscopy (XPS) indicated that carbonization treatment of the polyaniline (PANI) coated CNTs produced NCNTs owning the core-shell structure of a nitrogen-doped carbon shell and a CNT core, without destroying the intrinsic CNT structure. By increasing the aniline amount, the N-doped layer of the NCNTs became thicker, and the amount of nitrogen doping increased from 7.06% to 8.64% (mass fraction). As the supercapacitor electrode material, the NCNTs capacitance in 6 mol·L-1 aqueous KOH solution increased from 107 to 205 F·g-1 as the N-doped layer thickness decreased, which was much higher than the capacitance of 10 F·g-1 for the pristine CNTs. Especially, NCNT electrodes displayed od cyclability, maintaining 92.8%-97.1% of the initial capacitance after 1000 charge-discharge cycles. The high capacitance and od cyclability of the NCNTs as a supercapacitor electrode material can be attributed to the pseudo-Faradic capacitance and improved hydrophility contributed by the nitrogen functional groups and the core-shell structure of the NCNTs, respectively.

  • 加载中
    1. [1]

      (1) Dresselhaus, M. S.; Dresselhaus, G.; Eklund, P. C. Science of Fullerenes & Carbon Nanotubes; San Die : Academic Press,March 1996; pp 20-35.

    2. [2]

      (2) Treacy, M. M. J.; Ebbesen, T.W.; Gibson, J. M. Nature 1996,381, 678. doi: 10.1038/381678a0

    3. [3]

      (3) Frackowiak, E.; Metenier, K.; Bertagna, V.; Beguin, F. Appl. Phys. Lett. 2000, 77, 2421. doi: 10.1063/1.1290146

    4. [4]

      (4) Li, C. S.;Wang, D. Z.;Wang, X. F.; Liang, J. Carbon 2005, 43,249.

    5. [5]

      (5) Baughman, R. H.; Zakhidov, A. A.; de Heer,W. A. Science2002, 297, 787. doi: 10.1126/science.1060928

    6. [6]

      (6) Shiratori, Y.; Sugime, H.; Noda, S. J. Phys. Chem. C 2008, 112,17974.

    7. [7]

      (7) Hou, P. X.; Orikasa, H.; Yamazaki, T.; Matsuoka, K.; Tomita,A.; Setoyama, N.; Fukushima, Y.; Kyotani, T. Chem. Mater.2005, 1, 5187.

    8. [8]

      (8) Eduardo, C. S.; Florentino, L. U.; Emilio, M. S. ACS Nano2009, 3, 1913. doi: 10.1021/nn900286h

    9. [9]

      (9) Yang, Y.; Li, X.; Jiang, J.; Du, H.; Zhao, L.; Zhao, Y. ACS. Nano 2010, 4, 5755. doi: 10.1021/nn1014825

    10. [10]

      (10) Byrne, J.; Li, Z.; Jones, S.; Fleming, P.; Larsson, J. A.; Morris,M. A.; Holmes, J. D. ChemPhysChem. 2011, 12, 2995. doi: 10.1002/cphc.v12.16

    11. [11]

      (11) Liu, Y.; Jin, Z.;Wang, Y.; Cui, R. L.; Sun, H.; Peng, F.;Wei, L.;Wang, Z. X.; Liang, X. L.; Peng, L. M.; Li, Y. Adv. Funct. Mater. 2011, 21, 986. doi: 10.1002/adfm.201002086

    12. [12]

      (12) Hulicova-Jurcakova, D.; Kodama, M.; Shiraishi, S.; Hatori, H.;Zhu, Z. H.; Lu, G. Q. Adv. Funct. Mater. 2009, 19, 1800. doi: 10.1002/adfm.v19:11

    13. [13]

      (13) Inagakia, M.; Konno, H.; Tanaike, O. J. Power Sources 2010,195, 7880.

    14. [14]

      (14) Lota, G.; Grzyb, B.; Machnikowsk, H.; Machnikowski, J.;Frackowiak, E. Chem Phys. Lett. 2005, 404, 53. doi: 10.1016/j.cplett.2005.01.074

    15. [15]

      (15) Zhai, Y. P.; Dou, Y. Q.; Zhao, D. Y.; Fulvio, P. F.; Mayes, R. T.;Dai, S. Adv. Mater. 2011, 23, 4828. doi: 10.1002/adma.v23.42

    16. [16]

      (16) ng, K.; Du, F.; Xia, Z.; Durstock, M.; Dai, L. Science 2009,323, 760. doi: 10.1126/science.1168049

    17. [17]

      (17) Tang, Y.; Allen, B. L.; Kauffman, D. R.; Alexander, S. J. Am. Chem. Soc. 2009, 131, 13200. doi: 10.1021/ja904595t

    18. [18]

      (18) Yang, S.; Zhao, G. L.; Khosravi, E. J. Phys. Chem. C 2010, 114,3371.

    19. [19]

      (19) Sen, R.; Satishkumar, B. C.; vindaraj, A.; Harikumar, K. R.;Renganathan, M. K.; Rao, C. N. R. J. Mater. Chem. 1997, 7,2335. doi: 10.1039/a705891h

    20. [20]

      (20) Shirazi, Y.; Tofighy, M. A.; Mohammadi, T.; Pak, A. Appl. Sur. Sci. 2011, 257, 7359. doi: 10.1016/j.apsusc.2011.03.146

    21. [21]

      (21) Liu, J.; Rinzler, A. G.; Dai, H. J.; Hafner, J. H.; Bradley, R. K.;Boul, P. J.; Lu, A.; Iverson, T.; Shelimov, K.; Huffman, C. B.;Rodriguez-Macias, F.; Shon, Y. S.; Lee, T. R.; Colbert, D. T.;Smalley, R. E. Science 1998, 280, 1253. doi: 10.1126/science.280.5367.1253

    22. [22]

      (22) Hiura, H.; Ebbesen, T.W.; Tanigaki, K. Adv. Mater. 1995, 7,275.

    23. [23]

      (23) Arri , R.; Havecker, M.; Schlogl, R.; Su, D. S. Chem. Commun. 2008, 4891.

    24. [24]

      (24) Halder, A.; Sharma, S.; Hegde, M. S.; Ravishankar, N. J. Phys. Chem. C 2009, 113, 1466. doi: 10.1021/jp8072574

    25. [25]

      (25) Tessonnier, J. P.; Rosenthal, D.; Girgsdies, F.; Amadou, J.;Begin, D.; Pham-Huu, C.; Su, D. S.; Schlogl, R. Chem. Commun. 2009, 7158.

    26. [26]

      (26) Li, L. X.; Liu, Y. C.; Geng, X.; An, B. G. Acta Phys. -Chim. Sin.2011, 27, 443. [李莉香, 刘永长, 耿新, 安百刚. 物理化学学报, 2011, 27, 443.] doi: 10.3866/PKU.WHXB20110225

    27. [27]

      (27) Niwa,H.;Horiba,K.;Harada,Y.;Oshima,M.; Ikeda, T.; Terakura,K.; Ozaki, J. I.; Miyata, S. J. Power Sources 2009, 187, 93.doi: 10.1016/j.jpowsour.2008.10.064


  • 加载中
    1. [1]

      Hailang JIAHongcheng LIPengcheng JIYang TENGMingyun GUAN . Preparation and performance of N-doped carbon nanotubes composite Co3O4 as oxygen reduction reaction electrocatalysts. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 693-700. doi: 10.11862/CJIC.20230402

    2. [2]

      Zhaomei LIUWenshi ZHONGJiaxin LIGengshen HU . Preparation of nitrogen-doped porous carbons with ultra-high surface areas for high-performance supercapacitors. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 677-685. doi: 10.11862/CJIC.20230404

    3. [3]

      Li Jiang Changzheng Chen Yang Su Hao Song Yanmao Dong Yan Yuan Li Li . Electrochemical Synthesis of Polyaniline and Its Anticorrosive Application: Improvement and Innovative Design of the “Chemical Synthesis of Polyaniline” Experiment. University Chemistry, 2024, 39(3): 336-344. doi: 10.3866/PKU.DXHX202309002

    4. [4]

      Jin CHANG . Supercapacitor performance and first-principles calculation study of Co-doping Ni(OH)2. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1697-1707. doi: 10.11862/CJIC.20240108

    5. [5]

      Yanhui XUEShaofei CHAOMan XUQiong WUFufa WUSufyan Javed Muhammad . Construction of high energy density hexagonal hole MXene aqueous supercapacitor by vacancy defect control strategy. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1640-1652. doi: 10.11862/CJIC.20240183

    6. [6]

      Haihua Yang Minjie Zhou Binhong He Wenyuan Xu Bing Chen Enxiang Liang . Synthesis and Electrocatalytic Performance of Iron Phosphide@Carbon Nanotubes as Cathode Material for Zinc-Air Battery: a Comprehensive Undergraduate Chemical Experiment. University Chemistry, 2024, 39(10): 426-432. doi: 10.12461/PKU.DXHX202405100

    7. [7]

      Jiahong ZHENGJingyun YANG . Preparation and electrochemical properties of hollow dodecahedral CoNi2S4 supported by MnO2 nanowires. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1881-1891. doi: 10.11862/CJIC.20240170

    8. [8]

      Xiufang Wang Donglin Zhao Kehua Zhang Xiaojie Song . “Preparation of Carbon Nanotube/SnS2 Photoanode Materials”: A Comprehensive University Chemistry Experiment. University Chemistry, 2024, 39(4): 157-162. doi: 10.3866/PKU.DXHX202308025

    9. [9]

      Jinyi Sun Lin Ma Yanjie Xi Jing Wang . Preparation and Electrocatalytic Nitrogen Reduction Performance Study of Vanadium Nitride@Nitrogen-Doped Carbon Composite Nanomaterials: A Recommended Comprehensive Chemistry Experiment. University Chemistry, 2024, 39(4): 184-191. doi: 10.3866/PKU.DXHX202310094

    10. [10]

      Jie XIEHongnan XUJianfeng LIAORuoyu CHENLin SUNZhong JIN . Nitrogen-doped 3D graphene-carbon nanotube network for efficient lithium storage. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1840-1849. doi: 10.11862/CJIC.20240216

    11. [11]

      Wen LUOLin JINPalanisamy KannanJinle HOUPeng HUOJinzhong YAOPeng WANG . Preparation of high-performance supercapacitor based on bimetallic high nuclearity titanium-oxo-cluster based electrodes. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 782-790. doi: 10.11862/CJIC.20230418

    12. [12]

      Kuaibing Wang Honglin Zhang Wenjie Lu Weihua Zhang . Experimental Design and Practice for Recycling and Nickel Content Detection from Waste Nickel-Metal Hydride Batteries. University Chemistry, 2024, 39(11): 335-341. doi: 10.12461/PKU.DXHX202403084

    13. [13]

      Jiahong ZHENGJiajun SHENXin BAI . Preparation and electrochemical properties of nickel foam loaded NiMoO4/NiMoS4 composites. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 581-590. doi: 10.11862/CJIC.20230253

    14. [14]

      Kai CHENFengshun WUShun XIAOJinbao ZHANGLihua ZHU . PtRu/nitrogen-doped carbon for electrocatalytic methanol oxidation and hydrogen evolution by water electrolysis. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1357-1367. doi: 10.11862/CJIC.20230350

    15. [15]

      Kaihui Huang Dejun Chen Xin Zhang Rongchen Shen Peng Zhang Difa Xu Xin Li . Constructing Covalent Triazine Frameworks/N-Doped Carbon-Coated Cu2O S-Scheme Heterojunctions for Boosting Photocatalytic Hydrogen Production. Acta Physico-Chimica Sinica, 2024, 40(12): 2407020-. doi: 10.3866/PKU.WHXB202407020

    16. [16]

      Peng ZHOUXiao CAIQingxiang MAXu LIU . Effects of Cu doping on the structure and optical properties of Au11(dppf)4Cl2 nanocluster. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1254-1260. doi: 10.11862/CJIC.20240047

    17. [17]

      Qingtang ZHANGXiaoyu WUZheng WANGXiaomei WANG . Performance of nano Li2FeSiO4/C cathode material co-doped by potassium and chlorine ions. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1689-1696. doi: 10.11862/CJIC.20240115

    18. [18]

      Ziheng Zhuang Xiao Xu Kin Shing Chan . Superdrugs for Superbugs. University Chemistry, 2024, 39(9): 128-133. doi: 10.3866/PKU.DXHX202309040

    19. [19]

      Qiangqiang SUNPengcheng ZHAORuoyu WUBaoyue CAO . Multistage microporous bifunctional catalyst constructed by P-doped nickel-based sulfide ultra-thin nanosheets for energy-efficient hydrogen production from water electrolysis. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1151-1161. doi: 10.11862/CJIC.20230454

    20. [20]

      Geyang Song Dong Xue Gang Li . Recent Advances in Transition Metal-Catalyzed Synthesis of Anilines from Aryl Halides. University Chemistry, 2024, 39(2): 321-329. doi: 10.3866/PKU.DXHX202308030

Metrics
  • PDF Downloads(1134)
  • Abstract views(2324)
  • HTML views(19)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return