Citation:
TAO Jing-Liang, XIONG Yuan-Quan. Hydrogen Production from the Decomposition of Ethanol Aqueous Solution Using Glow Discharge Plasma Electrolysis[J]. Acta Physico-Chimica Sinica,
;2013, 29(01): 205-211.
doi:
10.3866/PKU.WHXB201210264
-
High-energy electrons play the most important role in the decomposition of ethanol aqueous solutions under glow discharge plasma electrolysis (GDE). The non-Faradaic currents greatly improve, resulting in the actual gas production yield exceeding the theoretical yield. In this paper, we investigated a novel process of hydrogen generation from ethanol decomposition by GDE. The main gaseous products were H2 and CO; in addition to small amounts of C2H4, CH4, O2, and C2H6. The H2 volume fraction was above 59% and CO was 20%. We conclude that voltages of points C and D (VC and VD) do not change with the electrolyte concentration, but the 'Kellogg area' becomes narrower with increasing electrolyte conductivity and the glow discharge is easier to attain. In addition, with increasing ethanol volume fraction, the H2 volume fraction decreases. The maximum gas production rate occurred for ethanol volume fractions of 30% and 80%. Improving the discharge voltage and raising the electrolyte conductivity had the same effect on glow discharge plasma electrolysis as the voltage load at both ends of the plasma steam sheath increases. The H2 volume fraction remains the same upon varying the discharge voltage or electrolyte conductivity, but increasing the electrolyte conductivity is advantageous to reduce Joule heating effects caused by GDE.
-
-
-
[1]
(1) Yan, Z. C.; Chen, L.;Wang, H. L. Acta Phys. -Chim. Sin. 2007,23, 835. [严宗诚, 陈砺, 王红林. 物理化学学报, 2007, 23,835.] doi: 10.3866/PKU.WHXB20070608
-
[2]
(2) Sengupta, S. K.; Singh, O. P. J. Electroanal. Chem. 1994, 369,113. doi: 10.1016/0022-0728(94)87089-6.
-
[3]
(3) Gao, J. Z.;Wang, X. Y.; Hu, Z. A.; Hou, J. G.; Lu, Q. F. Plasma Sci. Technol. 2001, 3, 765. doi: 10.1088/1009-0630/3/3/003
-
[4]
(4) Sengupta, S. K.; Singh, R.; Srivastva, A. K. J. Electrochem. Soc.1998, 145, 2209. doi: 10.1149/1.1838621
-
[5]
(5) Kuznetsova, N. I.; Kuznetsova, L. I.; Likholobov, V. A.; Pez, G.P. Catal. Today 2005, 99, 193. doi: 10.1016/j.cattod.2004.09.040
-
[6]
(6) Sengupta, S. K.; Sandhir, U.; Misra, N. J. Polym. Sci. Part A: Polym. Chem. 2001, 39, 1584. doi: 10.1002/pola.1134
-
[7]
(7) ng, J. Y.;Wang, J.; Xie,W. J.; Cai,W. M. J. Appl. Electrochem. 2008, 38, 1749. doi: 10.1007/s10800-008-9626-z
-
[8]
(8) Yang, H.; Matsumoto, Y.; Tezuka, M. J. Environ. Sci. 2009, 21 (Suppl. 1), 142. doi: 10.1016/S1001-0742(09)60059-0
-
[9]
(9) Campbell, S. A.; Cunnane, V. J.; Schiffrin, D. J. J. Eletroanal. Soc. 1992, 325, 257. doi: 10.1016/0022-0728(92)80117-M
-
[10]
(10) Pei, M. X.; Lin, H.; Shangguan,W. F.; Huang, Z. Acta Phys. -Chim. Sin. 2005, 21, 255. [裴梅香, 林赫, 上官文峰,黄震. 物理化学学报, 2005, 21, 255.] doi: 10.3866/PKU.WHXB20050306
-
[11]
(11) Yu, Q. Q.; Liu, T.;Wang, H.; Xiao, L. P.; Chen, M.; Jiang, X. Y.;Zheng, X. M. Chin. J. Catal. 2012, 33, 783. [于琴琴, 刘彤,王卉, 肖丽萍, 陈敏, 蒋晓原, 郑小明. 催化学报, 2012, 33,783.] doi: 10.1016/S1872-2067(11)60362-8
-
[12]
(12) Sengupta, S. K.; Rajeshwar, S.; Ashok, K. S. J. Electroanal. Chem. 1997, 427, 23. doi: 10.1016/S0022-0728(96)05044-9
-
[13]
(13) Hickling, A.; Ingram, M. D. Trans. Faraday Soc. 1964, 60, 783.doi: 10.1039/TF9646000783
-
[14]
(14) Mandin, P.; Aissa, A. A.; Roustan, H.; Hamburger, J.; Picard, G.Chem. Eng. Process. 2008, 47, 1926. doi: 10.1016/j.cep.2007.10.018
-
[15]
(15) Mandin, P.; Le Graverend, J. B.;Wuthrich, R.; Roustan, H.ECS Trans. 2009, 16, 49. doi: 10.1149/1.3104647
-
[16]
(16) Jin, X. L.;Wang, X. Y.; Zhang, H. M.; Xia, Q.;Wei, D. B.; Yue,J. J. Plasma Chem. Plasma Process. 2010, 30, 429. doi: 10.1007/s11090-010-9220-0
-
[17]
(17) Jin, X. L.;Wang, X. Y.; Yun, J. J.; Cai, Y. Q.; Zhang, H. Y.Electrochim. Acta 2010, 56, 925. doi: 10.1016/j.electactta.2010.09.079
-
[18]
(18) Yan, Z. C.; Chen, L.;Wang, H. L. J. Phys. D: Appl. Phys. 2008,41, 1. doi: 10.1088/0022-3727/41/15/155205
-
[19]
(19) Yan, Z. C.; Chen, L.;Wang, H. L. Int. J. Hydrog. Energy 2009,34, 48. doi: 10.1016/j.ijhydene.2008.09.099
-
[20]
(20) Shen, P. K.;Wang, S. L.; Hu, Z. Y.; Li, Y. L.; Zeng, R.; Huang,Y. Q. Acta Phys. -Chim. Sin. 2007, 23, 107. [沈培康, 汪圣龙,胡智怡, 李永亮, 曾蓉, 黄岳强. 物理化学学报, 2007, 23,107.] doi: 10.3866/PKU.WHXB20070122
-
[21]
(21) Zeng, K.; Zhang, D. K. Prog. Energy Combust. Sci. 2010, 36,307. doi: 10.1016/j.pecs. 2009.11.002
-
[22]
(22) Holladay, J. D.; Hu, J.; King, D. L.;Wang, Y. Catal. Today2009, 139, 244. doi: 10.1016/j.cattod.2008.08.039
-
[23]
(23) Wüthrich, R.; Mandin, P. Electrochim. Acta 2009, 54, 4031. doi: 10.1016/j.electacta. 2009.02.029
-
[24]
(24) Franklin, R. N. J. Phys. D: Appl. Phys. 2003, 36, 309. doi: 10.1088/0022-3727/36/22/R01
-
[25]
(25) Yan, Z. C. Hydrogen Generation by Glow Discharge PlasmaElectrolysis of Low Alcohol. Ph. D. Dissertation, South ChinaUniversity of Technology, Guangzhou, 2007. [严宗诚. 低碳醇溶液辉光放电电解及其制氢应用[D]. 广州: 华南理工大学,2007.]
-
[26]
(26) Luo, Y. R. Handbook of Bond Dissociation Energies in Organic Compounds; Science Press: Beijing, 2005; pp 56-195. [罗渝然. 化学键能数据手册. 北京: 科学出版社, 2005: 56-195.]
-
[1]
-
-
-
[1]
Tong Zhou , Liyi Xie , Chuyu Liu , Xiyan Zheng , Bao Li . Between Sobriety and Intoxication: The Fascinating Journey of Sauce-Flavored Latte. University Chemistry, 2024, 39(9): 55-58. doi: 10.12461/PKU.DXHX202312048
-
[2]
Siwei Lv , Tantian Tan , Xinyue Li , Siyan Zhang , Mingyuan Zhang , Minghao Li , Hangshuo Guo , Zhaorong Li , Liangjie Dong , Fengshuo Zhang , Junlong Zhao . Competition of the “King of Transboundary Medicine”. University Chemistry, 2024, 39(9): 102-108. doi: 10.12461/PKU.DXHX202403034
-
[3]
Feiya Cao , Qixin Wang , Pu Li , Zhirong Xing , Ziyu Song , Heng Zhang , Zhibin Zhou , Wenfang Feng . Magnesium-Ion Conducting Electrolyte Based on Grignard Reaction: Synthesis and Properties. University Chemistry, 2024, 39(3): 359-368. doi: 10.3866/PKU.DXHX202308094
-
[4]
Jiahe LIU , Gan TANG , Kai CHEN , Mingda ZHANG . Effect of low-temperature electrolyte additives on low-temperature performance of lithium cobaltate batteries. Chinese Journal of Inorganic Chemistry, 2025, 41(4): 719-728. doi: 10.11862/CJIC.20250023
-
[5]
Qingqing SHEN , Xiangbowen DU , Kaicheng QIAN , Zhikang JIN , Zheng FANG , Tong WEI , Renhong LI . Self-supporting Cu/α-FeOOH/foam nickel composite catalyst for efficient hydrogen production by coupling methanol oxidation and water electrolysis. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1953-1964. doi: 10.11862/CJIC.20240028
-
[6]
Aoyu Huang , Jun Xu , Yu Huang , Gui Chu , Mao Wang , Lili Wang , Yongqi Sun , Zhen Jiang , Xiaobo Zhu . Tailoring Electrode-Electrolyte Interfaces via a Simple Slurry Additive for Stable High-Voltage Lithium-Ion Batteries. Acta Physico-Chimica Sinica, 2025, 41(4): 100037-. doi: 10.3866/PKU.WHXB202408007
-
[7]
Yiping HUANG , Liqin TANG , Yufan JI , Cheng CHEN , Shuangtao LI , Jingjing HUANG , Xuechao GAO , Xuehong GU . Hollow fiber NaA zeolite membrane for deep dehydration of ethanol solvent by vapor permeation. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 225-234. doi: 10.11862/CJIC.20240224
-
[8]
Qiangqiang SUN , Pengcheng ZHAO , Ruoyu WU , Baoyue CAO . Multistage microporous bifunctional catalyst constructed by P-doped nickel-based sulfide ultra-thin nanosheets for energy-efficient hydrogen production from water electrolysis. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1151-1161. doi: 10.11862/CJIC.20230454
-
[9]
Yongmei Liu , Lisen Sun , Zhen Huang , Tao Tu . Curriculum-Based Ideological and Political Design for the Experiment of Methanol Oxidation to Formaldehyde Catalyzed by Electrolytic Silver. University Chemistry, 2024, 39(2): 67-71. doi: 10.3866/PKU.DXHX202308020
-
[10]
Kai CHEN , Fengshun WU , Shun XIAO , Jinbao ZHANG , Lihua ZHU . PtRu/nitrogen-doped carbon for electrocatalytic methanol oxidation and hydrogen evolution by water electrolysis. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1357-1367. doi: 10.11862/CJIC.20230350
-
[11]
Shuang Yang , Qun Wang , Caiqin Miao , Ziqi Geng , Xinran Li , Yang Li , Xiaohong Wu . Ideological and Political Education Design for Research-Oriented Experimental Course of Highly Efficient Hydrogen Production from Water Electrolysis in Aerospace Perspective. University Chemistry, 2024, 39(11): 269-277. doi: 10.12461/PKU.DXHX202403044
-
[12]
Mingyang Men , Jinghua Wu , Gaozhan Liu , Jing Zhang , Nini Zhang , Xiayin Yao . 液相法制备硫化物固体电解质及其在全固态锂电池中的应用. Acta Physico-Chimica Sinica, 2025, 41(1): 2309019-. doi: 10.3866/PKU.WHXB202309019
-
[13]
Juan WANG , Zhongqiu WANG , Qin SHANG , Guohong WANG , Jinmao LI . NiS and Pt as dual co-catalysts for the enhanced photocatalytic H2 production activity of BaTiO3 nanofibers. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1719-1730. doi: 10.11862/CJIC.20240102
-
[14]
Asif Hassan Raza , Shumail Farhan , Zhixian Yu , Yan Wu . 用于高效制氢的双S型ZnS/ZnO/CdS异质结构光催化剂. Acta Physico-Chimica Sinica, 2024, 40(11): 2406020-. doi: 10.3866/PKU.WHXB202406020
-
[15]
Xuanzhu Huo , Yixi Liu , Qiyu Wu , Zhiqiang Dong , Chanzi Ruan , Yanping Ren . Integrated Experiment of “Electrolytic Preparation of Cu2O and Gasometric Determination of Avogadro’s Constant: Implementation, Results, and Discussion: A Micro-Experiment Recommended for Freshmen in Higher Education at Various Levels Across the Nation. University Chemistry, 2024, 39(3): 302-307. doi: 10.3866/PKU.DXHX202308095
-
[16]
Jiao CHEN , Yi LI , Yi XIE , Dandan DIAO , Qiang XIAO . Vapor-phase transport of MFI nanosheets for the fabrication of ultrathin b-axis oriented zeolite membranes. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 507-514. doi: 10.11862/CJIC.20230403
-
[17]
Jianyin He , Liuyun Chen , Xinling Xie , Zuzeng Qin , Hongbing Ji , Tongming Su . ZnCoP/CdLa2S4肖特基异质结的构建促进光催化产氢. Acta Physico-Chimica Sinica, 2024, 40(11): 2404030-. doi: 10.3866/PKU.WHXB202404030
-
[18]
Linjie ZHU , Xufeng LIU . Electrocatalytic hydrogen evolution performance of tetra-iron complexes with bridging diphosphine ligands. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 321-328. doi: 10.11862/CJIC.20240207
-
[19]
Jiandong Liu , Zhijia Zhang , Mikhail Kamenskii , Filipp Volkov , Svetlana Eliseeva , Jianmin Ma . Research Progress on Cathode Electrolyte Interphase in High-Voltage Lithium Batteries. Acta Physico-Chimica Sinica, 2025, 41(2): 100011-. doi: 10.3866/PKU.WHXB202308048
-
[20]
Kaihui Huang , Dejun Chen , Xin Zhang , Rongchen Shen , Peng Zhang , Difa Xu , Xin Li . Constructing Covalent Triazine Frameworks/N-Doped Carbon-Coated Cu2O S-Scheme Heterojunctions for Boosting Photocatalytic Hydrogen Production. Acta Physico-Chimica Sinica, 2024, 40(12): 2407020-. doi: 10.3866/PKU.WHXB202407020
-
[1]
Metrics
- PDF Downloads(931)
- Abstract views(2583)
- HTML views(10)