Citation: GAO Rui, NIU Guang-Da, WANG Li-Duo, MA Bei-Bei, QIU Yong. N3/Al2O3/N749 Alternating Assembly Structure Broadening the Photoresponse and Interface Modification Effects in Quasi-Solid Dye-Sensitized Solar Cells[J]. Acta Physico-Chimica Sinica, ;2013, 29(01): 73-81. doi: 10.3866/PKU.WHXB201210233 shu

N3/Al2O3/N749 Alternating Assembly Structure Broadening the Photoresponse and Interface Modification Effects in Quasi-Solid Dye-Sensitized Solar Cells

  • Received Date: 14 August 2012
    Available Online: 24 October 2012

    Fund Project: 国家自然科学基金(50873055) (50873055)国家重点基础研究发展规划项目(973) (2009CB930602)资助 (973) (2009CB930602)

  • In this paper, the interface modification effects and electron processes in N3/Al2O3/N749 alternating structured dye-sensitized solar cells (DSCs) were studied. UV-Vis absorption and monochromatic incident photon-to-electron conversion efficiency (IPCE) spectra showed that the N3/Al2O3/ N749 structure broadened the photo-response range. Photocurrent-voltage (I-V) curves showed that enhanced conversion efficiencies were obtained. Compared with N3- and N749-only structures, the efficiency of the N3/Al2O3/N749 structure increased from 4.22% and 3.09% to 5.75% (36% and 86% enhancement), respectively. From electrochemical impedance spectroscopy (EIS) results, the N3/Al2O3/ N749 structure displayed increased interface resistance under dark conditions. This indicates that charge recombination is reduced in the N3/Al2O3/N749 device, which was confirmed from the dark current measurements. Furthermore, to analyze the electron processes, a series of equivalent circuit models were built to mimic the injection and recombination process in DSCs. Intensity modulated photocurrent spectroscopy (IMPS) and intensity modulated photovoltage spectroscopy (IMVS) also showed that this structure improved the electron life time and diffusion.

  • 加载中
    1. [1]

      (1) O'Regan, B.; Grätzel, M. Nature 1991, 353, 737. doi: 10.1038/353737a0

    2. [2]

      (2) Kuang, D. B; Klein, C.; Ito, S.; Moser, J.; Baker, R.;Zakeeruddin, S.; Grätzel, M. Adv. Funct. Mater. 2007, 17, 154.

    3. [3]

      (3) Hu, L. H.; Dai, S. Y.;Weng, J.; Xiao, S. F.; Sui, Y. F.; Huang, Y.;Chen, S. H.; Kong, F. T.; Pan, X.; Liang, L.Y.;Wang, K. J.J. Phys. Chem. B 2007, 111, 358. doi: 10.1021/jp065541a

    4. [4]

      (4) Hara, K.; Sugihara, H.; Tachibana, Y.; Islam, A.; Yanagida, M.;Sayama,K.; Arakawa, H. Langmuir 2001, 17, 5992. doi: 10.1021/la010343q

    5. [5]

      (5) Jung, H. S.; Lee, J. K.; Nastasi, M.; Lee, S.W.; Kim, J. Y.; Park,J. S.; Hong, K. S. Langmuir 2005, 21, 10332. doi: 10.1021/la051807d

    6. [6]

      (6) Nakade, S.; Kanzaki, T.; Kambe, S.;Wada, Y.; Yanagida, S.Langmuir 2005, 21, 11414. doi: 10.1021/la051483t

    7. [7]

      (7) Sommeling, P. M.; Späth, M.; Smit, H. J. P.; Bakker, N. J.;Kroon, J. M. J. Photochem. Photobiol. A: Chem. 2004, 164, 137.doi: 10.1016/j.jphotochem.2003.12.017

    8. [8]

      (8) Grätzel, M. C. R. Chimie. 2006, 9, 578.

    9. [9]

      (9) Figgemeier, E.; Hagfeldt, A. Int. J. Photoenergy 2004, 6, 127.doi: 10.1155/S1110662X04000169

    10. [10]

      (10) Meng, Q. B.; Takahashi, K.; Zhang, X. T.; Sutanto, I.; Rao, T.N.; Sato, O.; Fujishima, A. Langmuir 2003, 19, 3572. doi: 10.1021/la026832n

    11. [11]

      (11) Sathiya Priya, A. R.; Subramania, A.; Jung, Y. S.; Kim, K. J.Langmuir 2008, 24, 9816. doi: 10.1021/la801375s

    12. [12]

      (12) Grätzel, M. Accounts Chem. Res. 2009, 42, 1788. doi: 10.1021/ar900141y

    13. [13]

      (13) Fang, J. H.; Mao, H. F.;Wu, J. W; Zhang, X. Y; Lu, Z. H. Appl. Surf. Sci. 1997, 119, 237. doi: 10.1016/S0169-4332(97)00195-5

    14. [14]

      (14) Fang, J. H.; Su, L. Y.;Wu, J.W.; Shen, Y. C.; Lu, Z. H. New J. Chem. 1997, 21, 1303.

    15. [15]

      (15) Perera, V.; Pitigala, P.; Jayaweera, P.; Bandaranayake, K.;Tennakone, K. J. Phys. Chem. B 2003, 107, 13758. doi: 10.1021/jp0348979

    16. [16]

      (16) Kuang, D. B.;Walter, P.; Nüesch, F.; Kim, S.; Ko, J.; Comte, P.;Zakeeruddin, S. M.; Grätzel, M. Langmuir 2007, 23, 10906.doi: 10.1021/la702411n

    17. [17]

      (17) Cid, J.; Yum, J.; Jang, S.; Nazeeruddin, M. K.; Ferrero, E. M.;Palomares, E.; Ko, J.; Grätzel, M.; Torres, T. Angew. Chem. Int. Edit. 2007, 46, 8358.

    18. [18]

      (18) Liu, B. Q.; Zhao, X. P.; Luo,W. Dyes and Pigments 2008, 76,327. doi: 10.1016/j.dyepig.2006.09.004

    19. [19]

      (19) Clifford, J. N.; Palomares, E.; Nazeeruddin, M, K.; Thampi, R.;Grätzel, M.; Durrant, J. R. J. Am. Chem. Soc. 2004, 126, 5670.doi: 10.1021/ja049705h

    20. [20]

      (20) Choi, H.; Kim, S.; Kang, S. O.; Ko, J.; Kang, M. S.; Clifford, J.N.; Forneli, A.; Palomares, E.; Nazeeruddin, K.; Grätzel, M.Angew. Chem. Int. Edit. 2008, 120, 8383. doi: 10.1002/ange.v120:43

    21. [21]

      (21) Bandaranayake, K. M. P.; Senevirathna, M. K. I.;Weligamuwa,P.; Tennakone, K. Coord. Chem. Rev. 2004, 248, 1277. doi: 10.1016/j.ccr.2004.03.024

    22. [22]

      (22) Diamant, Y.; Chen, S. G.; Melamed, O.; Zaban, A. J. Phys. Chem. B 2003, 107, 1977. doi: 10.1021/jp027827v

    23. [23]

      (23) Gao, R.;Wang, L. D.; Ma, B. B.; Zhan, C.; Qiu, Y. Langmuir2010, 26, 2460. doi: 10.1021/la902688a

    24. [24]

      (24) Gao, R.; Ma, B. B.;Wang, L. D.; Shi, Y. T.; Dong, H. P.; Qiu, Y.Acta Phys. -Chim. Sin. 2011, 27, 413. [高瑞, 马蓓蓓, 王立铎, 史彦涛, 董豪鹏, 邱勇. 物理化学学报, 2011, 27, 413.]doi: 10.3866/PKU.WHXB20110234

    25. [25]

      (25) Lao, C. F.; Chu, Z. Z.; Zou, D. C. Acta Phys. -Chim. Sin. 2011,27, 419. [劳春峰, 初增泽, 邹德春. 物理化学学报, 2011, 27,419.] doi: 10.3866/PKU.WHXB20110209

    26. [26]

      (26) Gao, R.;Wang, L.; Geng, Y.; Ma, B.; Zhu, Y.; Dong, H.; Qiu, Y.Phys. Chem. Chem. Phys. 2011, 13, 10635.

    27. [27]

      (27) Chen, D. P.; Zhang, X. D.;Wei, C. C.; Liu, C. C.; Zhao, Y. Acta Phys. -Chim. Sin. 2011, 27, 425. [陈东坡, 张晓丹, 魏长春,刘彩池, 赵颖. 物理化学学报, 2011, 27, 425.] doi: 10.3866/PKU.WHXB20110222

    28. [28]

      (28) Gao, R.;Wang, L.; Geng, Y.; Ma, B.; Zhu, Y.; Dong, H.; Qiu, Y.J. Phys. Chem. C 2011, 115, 17986. doi: 10.1021/jp204466h

    29. [29]

      (29) Gao, R.; Niu, G. D.;Wang, L.; Geng, Y.; Ma, B.; Zhu, Y.; Dong,H.; Qiu, Y. Phys. Chem. Chem. Phys. 2012, 14, 5973.

    30. [30]

      (30) O'Regan, B. C.; Scully, S.; Mayer, A. C. J. Phys. Chem. B2005, 109, 4616. doi: 10.1021/jp0468049

    31. [31]

      (31) Alarcon, H.; Boschloo, G.; Mendoza, P.; Solis, J. L.; Hagfeldt,A. J. Phys. Chem. B 2005, 109, 18483. doi: 10.1021/jp0513521

    32. [32]

      (32) Wu, S. J.; Han, H.W.; Tai, Q. D.; Zhang, J.; Xu, S.; Zhou, C. H.;Yang, Y.; Hu, H.; Chen, B. L.; Sebo, B.; Zhao, X. Z.Nanotechnology 2008, 19, 215704. doi: 10.1088/0957-4484/19/21/215704

    33. [33]

      (33) Chen, S. G.; Chappel, S.; Diamant, Y.; Zaban, A. Chem. Mater.2001, 13, 4629. doi: 10.1021/cm010343b

    34. [34]

      (34) Palomares, E.; Clifford, J. N.; Haque, S. A.; Lutz, T.; Durrant, J.R. J. Am. Chem. Soc. 2003, 125, 475. doi: 10.1021/ja027945w

    35. [35]

      (35) Wang, P.;Wang, L. D.; Li, B.; Qiu, Y. Chin. Phys. Lett. 2005,22, 2708. doi: 10.1088/0256-307X/22/10/069

    36. [36]

      (36) Menzies, D. B.; Cervini, R.; Cheng, Y. B.; Simon, G. P.; Spiccia,L. J. Sol-Gel Sci. Technol. 2004, 32, 363. doi: 10.1007/s10971-004-5818-0

    37. [37]

      (37) Liu, Z. Y.; Pan, K.; Liu, M.;Wang, M. J.; Lu, Q.; Li, J. H.; Bai,Y. B.; Li, T. J. Electrochim. Acta 2005, 50, 2583. doi: 10.1016/j.electacta.2004.11.003

    38. [38]

      (38) Zhang, X. Y.; Sutanto, I.; Taguchi, T.; Tokuhiro, K.; Meng, Q.B.; Rao, T. N.; Fujishima, A.;Watanabe, H.; Nakamori, T.;Uragami, M. Sol. Energy Mater. Sol. Cells 2003, 80, 315. doi: 10.1016/j.solmat.2003.08.006

    39. [39]

      (39) Palomares, E.; Clifford, J. N.; Haque, S. A.; Lutz, T.; Durrant, J.R. Chem. Commun. 2002, 1464.

    40. [40]

      (40) Luo, F.;Wang, L. D.; Ma, B. B.; Qiu, Y. J. Photochem. Photobiol. A: Chem. 2008, 197, 375. doi: 10.1016/j.jphotochem.2008.02.011

    41. [41]

      (41) Ma, B. B.; Gao, R.;Wang, L. D.; Luo, F.; Zhan, C.; Li, J. L.;Qiu, Y. J. Photochem. Photobiol. A: Chem. 2009, 202, 33. doi: 10.1016/j.jphotochem.2008.11.004

    42. [42]

      (42) Burnside, S. D.; Shklover, V.; Barbé, C.; Comte, P.; Arendse, F.;Brooks, K.; Grätzel, M. Chem. Mater. 1998, 10, 2419. doi: 10.1021/cm980702b

    43. [43]

      (43) Huo, Z. P.; Dai, S. Y.;Wang, K. J.; Kong, F. T.; Zhang, C. N.;Pan, X.; Fang, X. Q. Sol. Energy Mater. Sol. Cells 2007, 91,1959. doi: 10.1016/j.solmat.2007.08.003

    44. [44]

      (44) Grätzel, M. Inorg. Chem. 2005, 44, 6841. doi: 10.1021/ic0508371

    45. [45]

      (45) Bisquert, J. J. Phys. Chem. B 2002, 106, 325. doi: 10.1021/jp011941g

    46. [46]

      (46) Wang, Q.; Moser, J.; Grätzel, M. J. Phys. Chem. B 2005, 109,14945. doi: 10.1021/jp052768h

    47. [47]

      (47) Qin, D.; Zhang, Y. D.; Huang, S. Q.; Luo, Y. H.; Li, D. M.;Meng, Q. B. Electrochim. Acta 2011, 56, 8680. doi: 10.1016/j.electacta.2011.07.065

    48. [48]

      (48) Green, M. A. Solar Cells; Prentice-Hall: Englewood, NJ, 1982;Vol. 96, pp 85-86.

    49. [49]

      (49) Kern, R.; Sastrawan, R.; Ferber, J.; Stangl, R.; Luther, J.Electrochim. Acta 2002, 47, 4213. doi: 10.1016/S0013-4686(02)00444-9

    50. [50]

      (50) Lee, K.; Park, S.W.; Ko, M. J.; Kim, K.; Park, N. G. Nature Materials 2009, 8, 665. doi: 10.1038/nmat2475

    51. [51]

      (51) Schlichthörl, G.; Huang, S. Y.; Sprague, J.; Frank, A. J. J. Phys. Chem. B 1997, 101, 8141. doi: 10.1021/jp9714126

    52. [52]

      (52) Dloczik, L.; Ileperuma, O.; Lauermann, I.; Peter, L. M.;Ponomarev, E. A.; Redmond, G.; Shaw, N. J.; Uhlendorf, I.J. Phys. Chem. B 1997, 101, 10281. doi: 10.1021/jp972466i

    53. [53]

      (53) Hagfeldt, A.; Boschloo, G.; Sun, L. C.; Kloo, L.; Pettersson, H.Chem. Rev. 2010, 110, 6595. doi: 10.1021/cr900356p

    54. [54]

      (54) Zhu, K.; Neale, N. R.; Miedaner, A.; Frank, A. J. Nano Lett.2007, 7, 69. doi: 10.1021/nl062000o


  • 加载中
    1. [1]

      Baohua LÜYuzhen LI . Anisotropic photoresponse of two-dimensional layered α-In2Se3(2H) ferroelectric materials. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1911-1918. doi: 10.11862/CJIC.20240105

    2. [2]

      Liang MAHonghua ZHANGWeilu ZHENGAoqi YOUZhiyong OUYANGJunjiang CAO . Construction of highly ordered ZIF-8/Au nanocomposite structure arrays and application of surface-enhanced Raman spectroscopy. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1743-1754. doi: 10.11862/CJIC.20240075

    3. [3]

      Meng Lin Hanrui Chen Congcong Xu . Preparation and Study of Photo-Enhanced Electrocatalytic Oxygen Evolution Performance of ZIF-67/Copper(I) Oxide Composite: A Recommended Comprehensive Physical Chemistry Experiment. University Chemistry, 2024, 39(4): 163-168. doi: 10.3866/PKU.DXHX202308117

    4. [4]

      Yonghui ZHOURujun HUANGDongchao YAOAiwei ZHANGYuhang SUNZhujun CHENBaisong ZHUYouxuan ZHENG . Synthesis and photoelectric properties of fluorescence materials with electron donor-acceptor structures based on quinoxaline and pyridinopyrazine, carbazole, and diphenylamine derivatives. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 701-712. doi: 10.11862/CJIC.20230373

    5. [5]

      Peng XUShasha WANGNannan CHENAo WANGDongmei YU . Preparation of three-layer magnetic composite Fe3O4@polyacrylic acid@ZiF-8 for efficient removal of malachite green in water. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 544-554. doi: 10.11862/CJIC.20230239

    6. [6]

      Tengjiao Wang Tian Cheng Rongjun Liu Zeyi Wang Yuxuan Qiao An Wang Peng Li . Conductive Hydrogel-based Flexible Electronic System: Innovative Experimental Design in Flexible Electronics. University Chemistry, 2024, 39(4): 286-295. doi: 10.3866/PKU.DXHX202309094

    7. [7]

      Cuiping Yang Huiping Ding Jinpeng Hou Kai Li Weiliang Tian . Reform and Exploration of “Comprehensive and Precise Process” Assessment in Chemical Engineering Principle Experimental Course. University Chemistry, 2024, 39(3): 178-190. doi: 10.3866/PKU.DXHX202309087

    8. [8]

      Jianmin Hao Ruifeng Wu Ying Wang Yijia Bai Xuechuan Gao Yuying Du . Reform and Practice of Physical Chemistry Course Based on Enhanced Process Assessment and Evaluation. University Chemistry, 2024, 39(8): 78-83. doi: 10.3866/PKU.DXHX202311103

    9. [9]

      Fang Niu Rong Li Qiaolan Zhang . Analysis of Gas-Solid Adsorption Behavior in Resistive Gas Sensing Process. University Chemistry, 2024, 39(8): 142-148. doi: 10.3866/PKU.DXHX202311102

    10. [10]

      Yuejiao An Wenxuan Liu Yanfeng Zhang Jianjun Zhang Zhansheng Lu . Revealing Photoinduced Charge Transfer Mechanism of SnO2/BiOBr S-Scheme Heterostructure for CO2 Photoreduction. Acta Physico-Chimica Sinica, 2024, 40(12): 2407021-. doi: 10.3866/PKU.WHXB202407021

    11. [11]

      Manman Jin Zhiguo Lv Qingtao Niu . Teaching Reformation and Case Study for “Chemical Process Development and Design” Based on “Just-in-Time” Dynamic and Accurate Matching Industrial Needs. University Chemistry, 2024, 39(11): 108-116. doi: 10.12461/PKU.DXHX202403030

    12. [12]

      Limin Shao Na Li . A Unified Equation Derived from the Charge Balance Equation for Constructing Acid-Base Titration Curve and Calculating Endpoint Error. University Chemistry, 2024, 39(11): 365-373. doi: 10.3866/PKU.DXHX202401086

    13. [13]

      Shihui Shi Haoyu Li Shaojie Han Yifan Yao Siqi Liu . Regioselectively Synthesis of Halogenated Arenes via Self-Assembly and Synergistic Catalysis Strategy. University Chemistry, 2024, 39(5): 336-344. doi: 10.3866/PKU.DXHX202312002

    14. [14]

      Yuping Wei Yiting Wang Jialiang Jiang Jinxuan Deng Hong Zhang Xiaofei Ma Junjie Li . Interdisciplinary Teaching Practice——Flexible Wearable Electronic Skin for Low-Temperature Environments. University Chemistry, 2024, 39(10): 261-270. doi: 10.12461/PKU.DXHX202404007

    15. [15]

      Xiyuan Su Zhenlin Hu Ye Fan Xianyuan Liu Xianyong Lu . Change as You Want: Multi-Responsive Superhydrophobic Intelligent Actuation Material. University Chemistry, 2024, 39(5): 228-237. doi: 10.3866/PKU.DXHX202311059

    16. [16]

      You Wu Chang Cheng Kezhen Qi Bei Cheng Jianjun Zhang Jiaguo Yu Liuyang Zhang . ZnO/D-A共轭聚合物S型异质结高效光催化产H2O2及其电荷转移动力学研究. Acta Physico-Chimica Sinica, 2024, 40(11): 2406027-. doi: 10.3866/PKU.WHXB202406027

    17. [17]

      Jinfu Ma Hui Lu Jiandong Wu Zhongli Zou . Teaching Design of Electrochemical Principles Course Based on “Cognitive Laws”: Kinetics of Electron Transfer Steps. University Chemistry, 2024, 39(3): 174-177. doi: 10.3866/PKU.DXHX202309052

    18. [18]

      Xin Lv Hongxing Zhang Kaibo Duan Wenhui Dai Zhihui Wen Wei Guo Junsheng Hao . Lighting the Way Against Cancer: Photodynamic Therapy. University Chemistry, 2024, 39(5): 70-79. doi: 10.3866/PKU.DXHX202309090

    19. [19]

      Di WURuimeng SHIZhaoyang WANGYuehua SHIFan YANGLeyong ZENG . Construction of pH/photothermal dual-responsive delivery nanosystem for combination therapy of drug-resistant bladder cancer cell. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1679-1688. doi: 10.11862/CJIC.20240135

    20. [20]

      Fengqiao Bi Jun Wang Dongmei Yang . Specialized Experimental Design for Chemistry Majors in the Context of “Dual Carbon”: Taking the Assembly and Performance Evaluation of Zinc-Air Fuel Batteries as an Example. University Chemistry, 2024, 39(4): 198-205. doi: 10.3866/PKU.DXHX202311069

Metrics
  • PDF Downloads(1533)
  • Abstract views(3866)
  • HTML views(8)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return