Citation: WANG Xiao-Juan, LI Zhi-Yi, LIU Zhi-Jun. Molecular Dynamics Simulations on Hydrolysis of Zinc Acetate in Supercritical Water[J]. Acta Physico-Chimica Sinica, ;2013, 29(01): 23-29. doi: 10.3866/PKU.WHXB201210123 shu

Molecular Dynamics Simulations on Hydrolysis of Zinc Acetate in Supercritical Water

  • Received Date: 9 August 2012
    Available Online: 12 October 2012

    Fund Project: 中央高校基本科研业务费专项资金(852001)资助项目 (852001)

  • Zinc oxide (ZnO) is a multifunctional material with wide applications in chemical engineering.Hydrothermal synthesis of ZnO under supercritical conditions from salt solutions containing zinc ions is an environmentally safe process. Two reaction steps are involved, zinc hydroxide sol formation and dehydration from the sol. However, little is known about the underlying mechanism. In this study, molecular dynamics simulations were performed to investigate the structural and thermodynamic changes in the zinc acetate hydrolysis process, i.e., Zn(CH3COO)2, in supercritical water (SCW). Our results show that Zn(CH3COO)2 is prone to aggregate in SCW. On average, one Zn2+ ion coordinates with five CH3COO- species and one H2O molecule, forming an octahedral configuration. WHowever, more water molecules bind Zn2+ at the SCW interface to form Zn(CH3COO)2 clusters. The total potential energy of each system decreases after the hydrolysis of Zn(CH3COO)2, suggesting that it is a thermally favorable process in SCW. The OH- reaction product incorporates into the amorphous Zn(CH3COO)2 cluster and CH3COOH is in the SCW phase. Our results provide a general theoretical framework for the Zn(CH3COO)2 hydrothermal synthesis in SCW.

  • 加载中
    1. [1]

      (1) Wang, X. J.; Hu, S. J.; Liu, X.W.; Li, Z. Y.; Hu, D. P. Chem.Eng. Oil. Gas 2007, 36, 362. [王晓娟, 胡施俊, 刘学武,李志义, 胡大鹏. 石油与天然气化工, 2007, 36, 362.]

    2. [2]

      (2) Wang, X. J.; Liu, X.W.; Xia, Y. J.; Li, Z. Y. J. Chem. Ind. Eng.2007, 28, 18. [王晓娟, 刘学武, 夏远景, 李志义. 化学工业与工程技术, 2007, 28, 18.]

    3. [3]

      (3) Dai, L.; Cheong,W. C.; Sow, C. H.; Lim, C. T.; Tan, V. B.Langmuir 2010, 26, 1165. doi: 10.1021/la9022739

    4. [4]

      (4) Matubayasi, N.;Wakai, C.; Nakahara, M. J. Chem. Phys. 1999,110, 8000. doi: 10.1063/1.478728

    5. [5]

      (5) Zhou, J.; Lu, X. H.;Wang, Y. R.; Shi, J. Acta Phys. -Chim. Sin.1999, 15, 1017. [周健, 陆小华, 王延儒, 时钧. 物理化学学报, 1999, 15, 1017. ] doi: 10.3866/PKU.WHXB19991112

    6. [6]

      (6) Sue, K.; Murata, K.; Kimura, K.; Arai, K. Green Chem. 2003, 5,6 59. doi: 10.1039/b306544h

    7. [7]

      (7) Viswanathan, R.; Gupta, R. B. J. Supercrit. Fluids 2003, 27,1 87. doi: 10.1016/S0896-8446(02)00236-X

    8. [8]

      (8) Sue, K.; Kimura, K.; Yamamoto, M.; Arai, K. Mater. Lett. 2004,58, 3350. doi: 10.1016/j.matlet.2004.06.036

    9. [9]

      (9) Ma, H. B. J. Chem. Phys. 2012, 136, 214501. doi: 10.1063/1 .4720575

    10. [10]

      (10) Lümmen, N.; Kvamme, B. Phys. Chem. Chem. Phys. 2007, 9,3 251. doi: 10.1039/b703430j

    11. [11]

      (11) Nahtigal, I. G.; Zasetsky, A. Y.; Svishchev, I. M. J. Phys. Chem.B 2008, 112, 7537. doi: 10.1021/jp709688g

    12. [12]

      (12) Nahtigal, I. G.; Svishchev, I. M. J. Phys. Chem. B 2009, 113,1 4681. doi: 10.1021/jp9039572

    13. [13]

      (13) Zhou, J.; Zhu, Y.;Wang,W. C.; Lu, X. H.;Wang, Y. R.; Shi, J.Acta Phys. -Chim. Sin. 2002, 18, 207. [周健, 朱宇, 汪文川 , 陆小华, 王延儒, 时钧. 物理化学学报, 2002, 18, 207.]d oi: 10.3866/PKU.WHXB20020304

    14. [14]

      (14) Lümmen, N.; Kvamme, B. J. Phys. Chem. B 2008, 112, 12374.d oi: 10.1021/jp710156b

    15. [15]

      (15) Lümmen, N.; Kvamme, B. J. Supercrit. Fluids 2008, 47, 270.d oi: 10.1016/j.supflu.2008.07.017

    16. [16]

      (16) Lümmen, N.; Kvamme, B. J. Chem. Phys. 2010, 132, 014702.d oi: 10.1063/1.3270158

    17. [17]

      (17) Zhang, J. L.; He, Z. H.; Han, Y.; Li,W.;Wu, J. J. X.; Gan, Z. X.;G u, J. J. Acta Phys. -Chim. Sin. 2012, 28, 1691. [张金利, 何正华 , 韩优, 李韡, 武江洁星, 甘中学, 谷俊杰. 物理化学学报 , 2012, 28, 1691.] doi: 10.3866/PKU.WHXB201205032

    18. [18]

      (18) Jorgensen,W. L.; Chandrasekhar, J.; Madura, J. D.; Impey, R.W .; Klein, M. L. J. Chem. Phys. 1983, 79, 926. doi: 10.1063/1 .445869

    19. [19]

      (19) Mizan, T. I.; Savage, P. E.; Ziff, R. M. J. Phys. Chem. 1994, 98,1 3067. doi: 10.1021/j100100a042

    20. [20]

      (20) Jorgensen,W. L.; Maxwell, D. S.; Tirado-Rives, J. J. Am. Chem.Soc. 1996, 118, 11225. doi: 10.1021/ja9621760

    21. [21]

      (21) Wang, J.; Cieplak, P.; Kollman, P. A. J. Comput. Chem. 2000,21, 1049. doi: 10.1002/(ISSN)1096-987X

    22. [22]

      (22) Van Der Spoel, D.; Lindahl, E.; Hess, B.; Groenhof, G.; Mark,A . E.; Berendsen, H. J. J. Comput. Chem. 2005, 26, 1701. doi: 1 0.1002/jcc.20291

    23. [23]

      (23) Darden, T.; York, D.; Pedersen, L. J. Chem. Phys. 1993, 98,1 0089. doi: 10.1063/1.464397

    24. [24]

      (24) Steven, S. Z. Chemical Principles, 6th ed.; Houghton MifflinC ompany: Boston, 2009.

    25. [25]

      (25) Hughes, J. T.; Navrotsky, A. J. Chem. Thermodynamics 2011,43, 980. doi: 10.1016/j.jct.2011.02.004

    26. [26]

      (26) Discovery Studio 2.5; Accelrys Software Inc.: San Die , CA,2 008.


  • 加载中
    1. [1]

      Yuan GAOYiming LIUChunhui WANGZhe HANChaoyue FANJie QIU . A hexanuclear cerium oxo cluster stabilized by furoate: Synthesis, structure, and remarkable ability to scavenge hydroxyl radicals. Chinese Journal of Inorganic Chemistry, 2025, 41(3): 491-498. doi: 10.11862/CJIC.20240271

    2. [2]

      Han ZHANGJianfeng SUNJinsheng LIANG . Hydrothermal synthesis and luminescent properties of broadband near-infrared Na3CrF6 phosphor. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 349-356. doi: 10.11862/CJIC.20240098

    3. [3]

      Zijian Jiang Yuang Liu Yijian Zong Yong Fan Wanchun Zhu Yupeng Guo . Preparation of Nano Zinc Oxide by Microemulsion Method and Study on Its Photocatalytic Activity. University Chemistry, 2024, 39(5): 266-273. doi: 10.3866/PKU.DXHX202311101

    4. [4]

      Yu Wang Shoulei Zhang Tianming Lv Yan Su Xianyu Liu Fuping Tian Changgong Meng . Introduce a Comprehensive Inorganic Synthesis Experiment: Synthesis of Nano Zinc Oxide via Microemulsion Using Waste Soybean Oil. University Chemistry, 2024, 39(7): 316-321. doi: 10.3866/PKU.DXHX202311035

    5. [5]

      Shanghua Li Malin Li Xiwen Chi Xin Yin Zhaodi Luo Jihong Yu . 基于高离子迁移动力学的取向ZnQ分子筛保护层实现高稳定水系锌金属负极的构筑. Acta Physico-Chimica Sinica, 2025, 41(1): 2309003-. doi: 10.3866/PKU.WHXB202309003

    6. [6]

      Shule Liu . Application of SPC/E Water Model in Molecular Dynamics Teaching Experiments. University Chemistry, 2024, 39(4): 338-342. doi: 10.3866/PKU.DXHX202310029

    7. [7]

      Congying Lu Fei Zhong Zhenyu Yuan Shuaibing Li Jiayao Li Jiewen Liu Xianyang Hu Liqun Sun Rui Li Meijuan Hu . Experimental Improvement of Surfactant Interface Chemistry: An Integrated Design for the Fusion of Experiment and Simulation. University Chemistry, 2024, 39(3): 283-293. doi: 10.3866/PKU.DXHX202308097

    8. [8]

      Zhi Zhou Yu-E Lian Yuqing Li Hui Gao Wei Yi . New Insights into the Molecular Mechanism Behind Clinical Tragedies of “Cephalosporin with Alcohol”. University Chemistry, 2025, 40(3): 42-51. doi: 10.12461/PKU.DXHX202403104

    9. [9]

      Yeyun Zhang Ling Fan Yanmei Wang Zhenfeng Shang . Development and Application of Kinetic Reaction Flasks in Physical Chemistry Experimental Teaching. University Chemistry, 2024, 39(4): 100-106. doi: 10.3866/PKU.DXHX202308044

    10. [10]

      Xuzhen Wang Xinkui Wang Dongxu Tian Wei Liu . Enhancing the Comprehensive Quality and Innovation Abilities of Graduate Students through a “Student-Centered, Dual Integration and Dual Drive” Teaching Model: A Case Study in the Course of Chemical Reaction Kinetics. University Chemistry, 2024, 39(6): 160-165. doi: 10.3866/PKU.DXHX202401074

    11. [11]

      Dexin Tan Limin Liang Baoyi Lv Huiwen Guan Haicheng Chen Yanli Wang . Exploring Reverse Teaching Practices in Physical Chemistry Experiment Courses: A Case Study on Chemical Reaction Kinetics. University Chemistry, 2024, 39(11): 79-86. doi: 10.12461/PKU.DXHX202403048

    12. [12]

      Ping ZHANGChenchen ZHAOXiaoyun CUIBing XIEYihan LIUHaiyu LINJiale ZHANGYu'nan CHEN . Preparation and adsorption-photocatalytic performance of ZnAl@layered double oxides. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1965-1974. doi: 10.11862/CJIC.20240014

    13. [13]

      Zhengzheng LIUPengyun ZHANGChengri WANGShengli HUANGGuoyu YANG . Synthesis, structure, and electrochemical properties of a sandwich-type {Co6}-cluster-added germanotungstate. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1173-1179. doi: 10.11862/CJIC.20240039

    14. [14]

      Juan CHENGuoyu YANG . A porous-layered aluminoborate built by mixed oxoboron clusters and AlO4 tetrahedra. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 193-200. doi: 10.11862/CJIC.20240341

    15. [15]

      Zhenming Xu Yibo Wang Zhenhui Liu Duo Chen Mingbo Zheng Laifa Shen . Experimental Design of Computational Materials Science and Computational Chemistry Courses Based on the Bohrium Scientific Computing Cloud Platform. University Chemistry, 2025, 40(3): 36-41. doi: 10.12461/PKU.DXHX202403096

    16. [16]

      Yiying Yang Dongju Zhang . Elucidating the Concepts of Thermodynamic Control and Kinetic Control in Chemical Reactions through Theoretical Chemistry Calculations: A Computational Chemistry Experiment on the Diels-Alder Reaction. University Chemistry, 2024, 39(3): 327-335. doi: 10.3866/PKU.DXHX202309074

    17. [17]

      Zunxiang Zeng Yuling Hu Yufei Hu Hua Xiao . Analysis of Plant Essential Oils by Supercritical CO2Extraction with Gas Chromatography-Mass Spectrometry: An Instrumental Analysis Comprehensive Experiment Teaching Reform. University Chemistry, 2024, 39(3): 274-282. doi: 10.3866/PKU.DXHX202309069

    18. [18]

      Xiaoning TANGShu XIAJie LEIXingfu YANGQiuyang LUOJunnan LIUAn XUE . Fluorine-doped MnO2 with oxygen vacancy for stabilizing Zn-ion batteries. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1671-1678. doi: 10.11862/CJIC.20240149

    19. [19]

      Ji-Quan Liu Huilin Guo Ying Yang Xiaohui Guo . Calculation and Discussion of Electrode Potentials in Redox Reactions of Water. University Chemistry, 2024, 39(8): 351-358. doi: 10.3866/PKU.DXHX202401031

    20. [20]

      Chuanming GUOKaiyang ZHANGYun WURui YAOQiang ZHAOJinping LIGuang LIU . Performance of MnO2-0.39IrOx composite oxides for water oxidation reaction in acidic media. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1135-1142. doi: 10.11862/CJIC.20230459

Metrics
  • PDF Downloads(1992)
  • Abstract views(7589)
  • HTML views(173)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return