Citation: WANG Hong-Tao, SUN Lin, CHEN Ji-Tang, LUO Chun-Hua. Ionic Conduction in Sn0.9Mg0.1P2O7 at Intermediate Temperatures[J]. Acta Physico-Chimica Sinica doi: 10.3866/PKU.WHXB201210101
-
Sn0.9Mg0.1P2O7 was synthesized in a solid state reaction and characterized by X-ray diffraction (XRD) and scanning electron microscopy (SEM). The XRD pattern indicated that the sample exhibited a single cubic phase. The protonic and oxide-ionic conduction were investigated using various electrochemical methods including AC impedance spectroscopy and gas concentration cells at intermediate temperatures (323-523 K). The highest conductivity observed was 5.04×10-2 S·cm-1 in a wet H2 atmosphere at 423 K. The ionic, protonic, oxide-ionic, and electronic transport numbers (Nt) were 0.95-1.00, 0.84-0.96, 0.04-0.10, 0.00-0.05, respectively, in a wet hydrogen atmosphere. The results indicate that Sn0.9Mg0.1P2O7 is an almost pure ionic conductor, has dominant protonic conduction, some limited oxide-ionic conduction, but little electronic conduction. A H2/air fuel cell using Sn0.9Mg0.1P2O7 as the electrolyte (thickness: 1.5 mm) generated maximum power densities of 18.7 mW·cm-2 at 398 K, 27.7 mW·cm-2 at 423 K, and 33.9 mW·cm-2 at 448 K.
-
Keywords:
-
Sn0.9Mg0.1P2O7
, - Ionic conduction,
- Electrolyte,
- Conductivity,
- Concentration cell,
- Fuel cell
-
-
-
[1]
(1) Fu, X. Z.; Luo, J. L.; Sanger, A. R.; Luo, N.; Chuang, K. T.J. Power Sources 2010, 195, 2659. doi: 10.1016/j.jpowsour.2009.10.069
-
[2]
(2) Weber, A.; Tiffee, E. I. J. Power Sources 2004, 127, 273. doi: 10.1016/j.jpowsour.2003.09.024
-
[3]
(3) Kim, Y. M.; Lohsoontorn, P.; Bae, J. J. Power Sources 2010,195, 6420. doi: 10.1016/j.jpowsour.2010.03.095
-
[4]
(4) Wang, X.W.; Yin, J. L.; Xu, J. H.;Wang, H. T.; Ma, G. L. Chin. J. Chem. 2011, 29, 2421. doi: 10.1002/cjoc.v29.11
-
[5]
(5) Haile, S. M.; Boysen, D. A.; Chisholm, C. R. I.; Merle, R. B.Nature 2001, 410, 910. doi: 10.1038/35073536
-
[6]
(6) Baker, R. T.; Salar, R.; Potter, A. R.; Metcalfe, I. S.; Sahibzada,M. J. Power Sources 2009, 191, 448. doi: 10.1016/j.jpowsour.2009.02.039
-
[7]
(7) Xie, K.; Yan, R. Q.; Xu, X. X.; Liu, X. Q.; Meng, G. Y. J. Power Sources 2009, 187, 403. doi: 10.1016/j.jpowsour.2008.11.007
-
[8]
(8) Liu, J.W.; Zhou, D. F.; Yang, M.; Luo, F.; Meng, J. Acta Phys. -Chim. Sin. 2012, 28, 1380. [刘建伟, 周德凤, 杨梅,罗飞, 孟健. 物理化学学报, 2012, 28, 1380.] doi: 10.3866/PKU.WHXB201203304
-
[9]
(9) Martínez-Amesti, A.; Larrañaga, A.; Rodríguez-Martínez, L.M.; Nó, M. L.; Pizarro, J. L.; Lares iti, A.; Arriortua, M. I.J. Power Sources 2009, 192, 151. doi: 10.1016/j.jpowsour.2009.02.011
-
[10]
(10) Zhu, B. Solid State Ionics 1999, 125, 397. doi: 10.1016/S0167-2738(99)00201-5
-
[11]
(11) Zhang, S.; Bi, L.; Zhang, L.; Tao, Z.; Sun,W.;Wang, H.; Liu,W. J. Power Sources 2009, 188, 343. doi: 10.1016/j.jpowsour.2008.12.056
-
[12]
(12) Yang, J. F.; Cheng, J. G.; Fan, Y. M.;Wang, R.; Gao, J. F. Acta Phys. -Chim. Sin. 2012, 28, 95. [杨俊芳, 程继贵, 樊玉萌,王睿, 高建峰. 物理化学学报, 2012, 28, 95.] doi: 10.3866/PKU.WHXB201111161
-
[13]
(13) Boysen, D. A.; Uda, T.; Chisholm, C. R. I.; Haile, S. M. Science2004, 303, 68. doi: 10.1126/science.1090920
-
[14]
(14) Nagao, M.; Kamiya, T.; Heo, P.; Tomita, A.; Hibino, T.; Sano,M. J. Electrochem. Soc. 2006, 153, A1604.
-
[15]
(15) Tomita, A.; Kajiyama, N.; Kamiya, T.; Nagao, M.; Hibino, T.J. Electrochem. Soc. 2007, 154, B1265.
-
[16]
(16) Tao, S.W. Solid State Ionics 2009, 180, 148. doi: 10.1016/j.ssi.2008.11.006
-
[17]
(17) Chen, X.;Wang, C. S.; Payzant, E. A.; Xia, C. R.; Chu, D.J. Electrochem. Soc. 2008, 155, B1264.
-
[18]
(18) Wu, X.; Verma, A.; Scott, K. Fuel Cells 2008, 8, 453. doi: 10.1002/fuce.v8:6
-
[19]
(19) Genzaki, K.; Heo, P.; Sano, M.; Hibino, T. J. Electrochem. Soc.2009, 156, B806.
-
[20]
(20) Tomita, A.; Yoshii, T.; Teranishi, S.; Nagao, M.; Hibino, T.J. Catal. 2007, 247, 137. doi: 10.1016/j.jcat.2007.02.001
-
[21]
(21) Tomita, A.; Nakajima, J.; Hibino, T. Angew. Chem. Int. Edit.2008, 47, 1462.
-
[22]
(22) Teranishi, S.; Kondo, K.; Tsuge, A.; Hibino, T. Sens. Actuators B 2009, 140, 170. doi: 10.1016/j.snb.2009.04.044
-
[23]
(23) Nagao, M.; Takeuchi, A.; Heo, P.; Hibino, T.; Sano, M.; Tomita,A. Electrochem. Solid-State Lett. 2006, 9, A105.
-
[24]
(24) Shen, Y. B.; Nishida, M.; Kanematsu,W.; Hibino, T. J. Mater. Chem. 2011, 21, 663. doi: 10.1039/c0jm02596h
-
[25]
(25) Sato, Y.; Shen, Y. B.; Nishida, M.; Kanematsu,W.; Hibino, T.J. Meter. Chem. 2012, 22, 3973. doi: 10.1039/c2jm15335a
-
[26]
(26) Jin, Y. C.; Okada, M.; Hibino, T. J. Power Sources 2011, 196,4905. doi: 10.1016/j.jpowsour.2011.02.028
-
[27]
(27) Wang, H.; Liu, J.;Wang,W.; Ma, G. J. Power Sources 2010,195, 5596. doi: 10.1016/j.jpowsour.2010.03.087
-
[28]
(28) Wang, H.; Zhang, H.; Xiao, G.; Zhang, F.; Yu, T.; Xiao, J.; Ma,G. J. Power Sources 2011, 196, 683. doi: 10.1016/j.jpowsour.2010.07.067
-
[29]
(29) Shannon, R. D. Acta Cryst. A 1976, 32, 751. doi: 10.1107/S0567739476001551
-
[30]
(30) Guan, J.; Dorris, S. E.; Balachardran, U.; Liu, M. Solid State Ionics 1997, 100, 45. doi: 10.1016/S0167-2738(97)00320-2
-
[31]
(31) Shimura, T.; Esaka, K.; Matsumoto, H.; Iwahara, H. Solid State Ionics 2002, 149, 237. doi: 10.1016/S0167-2738(02)00400-9
-
[32]
(32) Shimada, T.;Wen, C.; Taniguchi, N.; Otomo, J.; Takahashi, H.J. Power Sources 2004, 131, 289. doi: 10.1016/j.jpowsour.2003.11.087
-
[33]
(33) Guo, Y.; Liu, B.; Chen, C.;Wang,W.; Ma, G. Electrochem. Commun. 2009, 11, 153. doi: 10.1016/j.elecom.2008.10.038
-
[1]
-
-
[1]
Jiayu Tang , Jichuan Pang , Shaohua Xiao , Xinhua Xu , Meifen Wu . Improvement for Measuring Transference Numbers of Ions by Moving-Boundary Method. University Chemistry, doi: 10.3866/PKU.DXHX202311021
-
[2]
Tao Jiang , Yuting Wang , Lüjin Gao , Yi Zou , Bowen Zhu , Li Chen , Xianzeng Li . Experimental Design for the Preparation of Composite Solid Electrolytes for Application in All-Solid-State Batteries: Exploration of Comprehensive Chemistry Laboratory Teaching. University Chemistry, doi: 10.3866/PKU.DXHX202308057
-
[3]
Fengqiao Bi , Jun Wang , Dongmei Yang . Specialized Experimental Design for Chemistry Majors in the Context of “Dual Carbon”: Taking the Assembly and Performance Evaluation of Zinc-Air Fuel Batteries as an Example. University Chemistry, doi: 10.3866/PKU.DXHX202311069
-
[4]
Doudou Qin , Junyang Ding , Chu Liang , Qian Liu , Ligang Feng , Yang Luo , Guangzhi Hu , Jun Luo , Xijun Liu . Addressing Challenges and Enhancing Performance of Manganese-based Cathode Materials in Aqueous Zinc-Ion Batteries. Acta Physico-Chimica Sinica, doi: 10.3866/PKU.WHXB202310034
-
[5]
Yifeng Xu , Jiquan Liu , Bin Cui , Yan Li , Gang Xie , Ying Yang . “Xiao Li’s School Adventures: The Working Principles and Safety Risks of Lithium-ion Batteries”. University Chemistry, doi: 10.12461/PKU.DXHX202404009
-
[6]
Xiaoning TANG , Shu XIA , Jie LEI , Xingfu YANG , Qiuyang LUO , Junnan LIU , An XUE . Fluorine-doped MnO2 with oxygen vacancy for stabilizing Zn-ion batteries. Chinese Journal of Inorganic Chemistry, doi: 10.11862/CJIC.20240149
-
[7]
Siyu Zhang , Kunhong Gu , Bing'an Lu , Junwei Han , Jiang Zhou . Hydrometallurgical Processes on Recycling of Spent Lithium-lon Battery Cathode: Advances and Applications in Sustainable Technologies. Acta Physico-Chimica Sinica, doi: 10.3866/PKU.WHXB202309028
-
[8]
Qi Li , Pingan Li , Zetong Liu , Jiahui Zhang , Hao Zhang , Weilai Yu , Xianluo Hu . Fabricating Micro/Nanostructured Separators and Electrode Materials by Coaxial Electrospinning for Lithium-Ion Batteries: From Fundamentals to Applications. Acta Physico-Chimica Sinica, doi: 10.3866/PKU.WHXB202311030
-
[9]
Jianbao Mei , Bei Li , Shu Zhang , Dongdong Xiao , Pu Hu , Geng Zhang . Enhanced Performance of Ternary NASICON-Type Na3.5-xMn0.5V1.5-xZrx(PO4)3/C Cathodes for Sodium-Ion Batteries. Acta Physico-Chimica Sinica, doi: 10.3866/PKU.WHXB202407023
-
[10]
Zhenming Xu , Mingbo Zheng , Zhenhui Liu , Duo Chen , Qingsheng Liu . Experimental Design of Project-Driven Teaching in Computational Materials Science: First-Principles Calculations of the LiFePO4 Cathode Material for Lithium-Ion Batteries. University Chemistry, doi: 10.3866/PKU.DXHX202307022
-
[11]
Feiya Cao , Qixin Wang , Pu Li , Zhirong Xing , Ziyu Song , Heng Zhang , Zhibin Zhou , Wenfang Feng . Magnesium-Ion Conducting Electrolyte Based on Grignard Reaction: Synthesis and Properties. University Chemistry, doi: 10.3866/PKU.DXHX202308094
-
[12]
Wenqi Gao , Xiaoyan Fan , Feixiang Wang , Zhuojun Fu , Jing Zhang , Enlai Hu , Peijun Gong . Exploring Nernst Equation Factors and Applications of Solid Zinc-Air Battery. University Chemistry, doi: 10.3866/PKU.DXHX202310026
-
[13]
Zeyuan WANG , Songzhi ZHENG , Hao LI , Jingbo WENG , Wei WANG , Yang WANG , Weihai SUN . Effect of I2 interface modification engineering on the performance of all-inorganic CsPbBr3 perovskite solar cells. Chinese Journal of Inorganic Chemistry, doi: 10.11862/CJIC.20240021
-
[14]
Yong Zhou , Jia Guo , Yun Xiong , Luying He , Hui Li . Comprehensive Teaching Experiment on Electrochemical Corrosion in Galvanic Cell for Chemical Safety and Environmental Protection Course. University Chemistry, doi: 10.3866/PKU.DXHX202310109
-
[15]
Huizhong Wu , Ruiheng Liang , Ge Song , Zhongzheng Hu , Xuyang Zhang , Minghua Zhou . Enhanced interfacial charge transfer on Bi metal@defective Bi2Sn2O7 quantum dots towards improved full-spectrum photocatalysis: A combined experimental and theoretical investigation. Chinese Chemical Letters, doi: 10.1016/j.cclet.2023.109131
-
[16]
Yixuan Gao , Lingxing Zan , Wenlin Zhang , Qingbo Wei . Comprehensive Innovation Experiment: Preparation and Characterization of Carbon-based Perovskite Solar Cells. University Chemistry, doi: 10.3866/PKU.DXHX202311091
-
[17]
Kuaibing Wang , Honglin Zhang , Wenjie Lu , Weihua Zhang . Experimental Design and Practice for Recycling and Nickel Content Detection from Waste Nickel-Metal Hydride Batteries. University Chemistry, doi: 10.12461/PKU.DXHX202403084
-
[18]
Jizhou Liu , Chenbin Ai , Chenrui Hu , Bei Cheng , Jianjun Zhang . 六氯锡酸铵促进钙钛矿太阳能电池界面电子转移及其飞秒瞬态吸收光谱研究. Acta Physico-Chimica Sinica, doi: 10.3866/PKU.WHXB202402006
-
[19]
Yipeng Zhou , Chenxin Ran , Zhongbin Wu . Metacognitive Enhancement in Diversifying Ideological and Political Education within Graduate Course: A Case Study on “Solar Cell Performance Enhancement Technology”. University Chemistry, doi: 10.3866/PKU.DXHX202312096
-
[20]
Haihua Yang , Minjie Zhou , Binhong He , Wenyuan Xu , Bing Chen , Enxiang Liang . Synthesis and Electrocatalytic Performance of Iron Phosphide@Carbon Nanotubes as Cathode Material for Zinc-Air Battery: a Comprehensive Undergraduate Chemical Experiment. University Chemistry, doi: 10.12461/PKU.DXHX202405100
-
[1]
Metrics
- PDF Downloads(506)
- Abstract views(2000)
- HTML views(54)