Citation: YUAN Shuai, MA Jing, ZHANG Wen-Ying, SHU Kun-Xian, DOU Yu-Sheng. Semiclassical Dynamics Simulation and CASSCF Calculation for 5-Methyl Cytosine and Cytosine[J]. Acta Physico-Chimica Sinica doi: 10.3866/PKU.WHXB201209284 shu

Semiclassical Dynamics Simulation and CASSCF Calculation for 5-Methyl Cytosine and Cytosine

  • Received Date: 24 August 2012
    Available Online: 28 September 2012

    Fund Project: 国家自然科学基金(21073242) (21073242)重庆市自然科学基金(CSTC2011jjA00009, CSTC2009BB5419) (CSTC2011jjA00009, CSTC2009BB5419)重庆市教委科学技术项目(KJ120516)资助 (KJ120516)

  • We performed a semiclassical dynamics simulation study of the photophysical deactivation of 5m-cytosine (5m-Cyt) and cytosine (Cyt) induced by ultraviolet radiation of 267 nm. The results show that deactivation of the excited state of 5m-Cyt and Cyt results from the distortion of the C5-C6 bond and the out-of-plane vibration of methyl (or H5) and the H6 atom. A so-called“biradical state”, in which the methyl (or H5) and H6 atoms are nearly perpendicular to the average ring plane and displaced in opposite directions, is formed at the decay point. The vibration frequency of the methyl derivative is less than that of the H atom derivative because of its increased volume relative to the H atom. The results indicated that molecular deformation at the C5 atom of 5m-Cyt will be weakened and will result in a longer excited lifetime of 5m-Cyt. Complete active space self-consistent field (CASSCF) calculations show that the energy of the conical intersection (CI) of 5m-Cyt is 0.3 eV higher than that of Cyt. This suggests that promotion to the CI point for 5m-Cyt requires the molecule to overcome a larger energetic barrier, which results in a longer excited state lifetime than Cyt.

  • 加载中
    1. [1]

      (1) Beukers, R.; Eker, A. P. M.; Lohman, P. H. M. DNA Repair2008, 7, 530. doi: 10.1016/j.dnarep.2007.11.010

    2. [2]

      (2) Melnikova, V. O.; Ananthaswamy, H. N. Mutat. Res. 2005, 571,91. doi: 10.1016/j.mrfmmm.2004.11.015

    3. [3]

      (3) Cadet, J.; Sage, E.; Douki, T. Mutat. Res. 2005, 571, 3. doi: 10.1016/j.mrfmmm.2004.09.012

    4. [4]

      (4) Mouret, S.; Baudouin, C.; Charveron, M.; Favier, A.; Cadet, J.;Douki, T. Proc. Natl. Acad. Sci. U. S. A. 2006, 103, 13765. doi: 10.1073/pnas.0604213103

    5. [5]

      (5) Crespo-Hernández, C.; Cohen, B.; Hare, P.; Kohler, B. Chem. Rev. 2004, 104, 1977.

    6. [6]

      (6) Shukla, M.; Leszczynski, J. J. Biomol. Struct. Dyn. 2007, 25,93. doi: 10.1080/07391102.2007.10507159

    7. [7]

      (7) Saigusa, H. J. Photochem. Photobiol. C 2006, 7, 197. doi: 10.1016/j.jphotochemrev.2006.12.003

    8. [8]

      (8) de Vries M.; Hobza, P. Annu. Rev. Phys. Chem. 2007, 58, 585.doi: 10.1146/annurev.physchem.57.032905.104722

    9. [9]

      (9) Pecourt, J. M. L.; Peon, J.; Kohler, B. J. Am. Chem. Soc. 2000,122, 9348. doi: 10.1021/ja0021520

    10. [10]

      (10) Crespo-Hernandez, C. E.; Cohen, B.; Hare P. M.; Kohler, B.Chem. Rev. 2004, 104, 1977. doi: 10.1021/cr0206770

    11. [11]

      (11) Peon, J.; Zewail, A. H. Chem. Phys. Lett. 2001, 348, 255.

    12. [12]

      (12) Gustavsson, T.; Sharonov, A.; Markovitsi, D. Chem. Phys. Lett.2002, 351, 195. doi: 10.1016/S0009-2614(01)01375-6

    13. [13]

      (13) Shukla, M. K.; Leszczynski, J. J. Biomol. Struct. Dyn. 2007, 25,93. doi: 10.1080/07391102.2007.10507159

    14. [14]

      (14) Conti, I.; Altoè, P.; Stenta, M.; Garavelli, M.; Orlandi, G. Phys. Chem. Chem. Phys. 2010, 12, 5016.

    15. [15]

      (15) Serrano-Andres, L.; Merchan, M. J. Photochem. Photobiol. C2009, 10, 21. doi: 10.1016/j.jphotochemrev.2008.12.001

    16. [16]

      (16) Langer, H.; Doltsinis, N. L. J. Chem. Phys. 2003, 118, 5400.doi: 10.1063/1.1555121

    17. [17]

      (17) Canuel, C.; Mons, M.; Piuzzi, F.; Tardivel, B.; Dimicoli, I.;Elhanine, M. J. Chem. Phys. 2005, 122, 074316. doi: 10.1063/1.1850469

    18. [18]

      (18) Zechmann, G.; Barbatti, M. J. Phys. Chem. A 2008, 112, 8273.doi: 10.1021/jp804309x

    19. [19]

      (19) Karunakaran, V.; Kleinermanns, K.; Improta, R.; Kovalenko, S.A. J. Am. Chem. Soc. 2009, 131, 5839. doi: 10.1021/ja810092k

    20. [20]

      (20) Kwok,W. M.; Ma, C.; Phillips, D. L. J. Am. Chem. Soc. 2008,130, 5131. doi: 10.1021/ja077831q

    21. [21]

      (21) Zechmann, G.; Barbatti, M. J. Phys. Chem. A 2008, 112, 8273.doi: 10.1021/jp804309x

    22. [22]

      (22) Ismail, N.; Blancafort, L.; Olivucci, M.; Kohler, B.; Robb, M. A.J. Am. Chem. Soc. 2002, 124, 6818. doi: 10.1021/ja0258273

    23. [23]

      (23) Merchán, M.; nzález-Luque, R.; Climent, T.; Serrano-Andrés, L.; Rodríguez, E.; Reguero, M.; Peláez, D. J. Phys. Chem. B 2006, 110, 26471. doi: 10.1021/jp066874a

    24. [24]

      (24) Zgierski, M. Z.; Patchkovskii, S.; Fujiwara, T.; Lim, E. C.Chem. Phys. Lett. 2007, 440, 145. doi: 10.1016/j.cplett.2007.04.017

    25. [25]

      (25) Serrano-Andrés, L.; Merchán, M.; Borin, A. C. Chem. Eur. J.2006, 12, 6559.

    26. [26]

      (26) Malone, R. J.; Miller, A. M.; Kohler, B. Photochem. Photobiol.2003, 77, 158. doi: 10.1562/0031-8655(2003)077<0158:SESLOC>2.0.CO;2

    27. [27]

      (27) Zgierski, M. Z.; Patchkovskii, S.; Fujiwara, T.; Lim, E. C.Chem. Phys. Lett. 2007, 440, 145. doi: 10.1016/j.cplett.2007.04.017

    28. [28]

      (28) Sharonov, A.; Gustavsson, T.; Marguet, S.; Markovitsi, D.Photochem. Photobiol. Sci. 2003, 2, 1. doi: 10.1039/b211055e

    29. [29]

      (29) Gustavsson, T.; Banyasz, A.; Lazzarotto, E.; Markovitsi, D.;Scalmani, G.; Frisch, M. J.; Barone, V.; Improta, R. J. Am. Chem. Soc. 2006, 128, 607. doi: 10.1021/ja056181s

    30. [30]

      (30) Dou, Y. S.; Torralva, B. R.; Allen, R. E. Chem. Phys. Lett. 2004,392, 352. doi: 10.1016/j.cplett.2004.05.087

    31. [31]

      (31) Dou, Y. S.; Torralva, B. R.; Allen, R. E. J. Mod. Optics. 2003,50, 2615.

    32. [32]

      (32) Lei, Y.; Yuan, S.; Dou, Y.;Wang, Y.;Wen, Z. J. Phys. Chem. A2008, 112, 8497. doi: 10.1021/jp802483b

    33. [33]

      (33) Zhang,W.; Yuan, S.; Li, A.; Dou, Y.; Zhao, J.; Fang,W. J. Phys. Chem. C 2010, 114, 5594. doi: 10.1021/jp907290f

    34. [34]

      (34) Yuan, S.; Zhang,W. Y.; Liu, L. H.; Dou, Y.; Fang,W. H.; Lo, G.V. J. Phys. Chem. A 2011, 115, 13291.

    35. [35]

      (35) Dou, Y.; Xiong, S.;Wu,W. F.; Yuan, S.; Tang, H. J. Photochem. Photobiol. B 2010, 101, 31. doi: 10.1016/j.jphotobiol.2010.06.008

    36. [36]

      (36) Zhang,W. Y.; Yuan, S.;Wang, Z.; Qi, Z.; Zhao, J.; Dou, Y.; Lo,G. Chem. Phys. Lett. 2011, 506, 303. doi: 10.1016/j.cplett.2011.03.024

    37. [37]

      (37) Yuan, S.; Zhang,W. Y.; Li, A. Y.; Zhu, Y. M.; Dou, Y. S. Acta Phys. -Chim. Sin. 2011, 27, 824. [袁帅, 张文英, 李安阳,朱义敏, 豆育升. 物理化学学报, 2011, 27, 824.] doi: 10.3866/PKU.WHXB20110341

    38. [38]

      (38) Dou, Y. S.; Zhao,W. H.; Yuan, S.; Zhang,W. Y.; Tang, H. Sci. Chin. Chem. 2012, 55, 1377. [豆育升, 赵文辉, 袁帅, 张文英, 唐红. 中国科学: 化学, 2012, 55, 1377.] doi: 10.1007/s11426-012-4578-x

    39. [39]

      (39) Dou, Y. S.; Li,W.; Yuan, S.; Zhang,W. Y.; Li, A. Y.; Shu, K. X.;Tang, H. Acta Phys. -Chim. Sin. 2011, 27, 2559. [豆育升,李伟, 袁帅, 张文英, 李安阳, 舒坤贤, 唐红, 物理化学学报, 2011, 27, 2559.] doi: 10.3866/PKU.WHXB20111115

    40. [40]

      (40) Zhang,W. Y.; Ma, J.; Yuan, S.; Shu, K. X.; Dou, Y. S. Acta Phys. -Chim. Sin. 2012, 28, 1676. [张文英, 马静, 袁帅,舒坤贤, 豆育升, 物理化学学报, 2012, 28, 1676.]doi: 10.3866/PKU.WHXB201205041

    41. [41]

      (41) Dou, Y. S.; Yuan, S.; Zhang,W. Y.; Tang, H.; Lo, G. V. Mol. Phys. 2012, 110, 1517. doi: 10.1080/00268976.2012.663944

    42. [42]

      (42) Zhang, L. B.; Bu, Y. X. J. Phys. Chem. B 2008, 112, 10723. doi: 10.1021/jp802556a

    43. [43]

      (43) Zhang, L. B.; Li, H. F.; Li, J. L.; Chen, X. H.; Bu, Y. X.J. Comput. Chem. 2009, 31, 825.

    44. [44]

      (44) Frisch, M. J.; Trucks, G.W.; Schlegel, H. B.; et al. Gaussian 09,Revision C.01; Gaussian Inc.:Wallingford, CT, 2010.

    45. [45]

      (45) Zgierskia, M. Z.; Patchkovskii, S. J. Chem. Phys. 2005, 123,081101. doi: 10.1063/1.2031207

    46. [46]

      (46) Fülscher, M. P.; Roos, B. O. J. Am. Chem. Soc. 1995, 117, 2089.


  • 加载中
    1. [1]

      Yan Li Xinze Wang Xue Yao Shouyun Yu . Kinetic Resolution Enabled by Photoexcited Chiral Copper Complex-Mediated Alkene EZ Isomerization: A Comprehensive Chemistry Experiment for Undergraduate Students. University Chemistry, doi: 10.3866/PKU.DXHX202309053

    2. [2]

      Aidang Lu Yunting Liu Yanjun Jiang . Comprehensive Organic Chemistry Experiment: Synthesis and Characterization of Triazolopyrimidine Compounds. University Chemistry, doi: 10.3866/PKU.DXHX202401029

    3. [3]

      Shule Liu . Application of SPC/E Water Model in Molecular Dynamics Teaching Experiments. University Chemistry, doi: 10.3866/PKU.DXHX202310029

    4. [4]

      Yaling Chen . Basic Theory and Competitive Exam Analysis of Dynamic Isotope Effect. University Chemistry, doi: 10.3866/PKU.DXHX202311093

    5. [5]

      Jinfu Ma Hui Lu Jiandong Wu Zhongli Zou . Teaching Design of Electrochemical Principles Course Based on “Cognitive Laws”: Kinetics of Electron Transfer Steps. University Chemistry, doi: 10.3866/PKU.DXHX202309052

    6. [6]

      Yeyun Zhang Ling Fan Yanmei Wang Zhenfeng Shang . Development and Application of Kinetic Reaction Flasks in Physical Chemistry Experimental Teaching. University Chemistry, doi: 10.3866/PKU.DXHX202308044

    7. [7]

      Xuzhen Wang Xinkui Wang Dongxu Tian Wei Liu . Enhancing the Comprehensive Quality and Innovation Abilities of Graduate Students through a “Student-Centered, Dual Integration and Dual Drive” Teaching Model: A Case Study in the Course of Chemical Reaction Kinetics. University Chemistry, doi: 10.3866/PKU.DXHX202401074

    8. [8]

      Dexin Tan Limin Liang Baoyi Lv Huiwen Guan Haicheng Chen Yanli Wang . Exploring Reverse Teaching Practices in Physical Chemistry Experiment Courses: A Case Study on Chemical Reaction Kinetics. University Chemistry, doi: 10.12461/PKU.DXHX202403048

    9. [9]

      Yiying Yang Dongju Zhang . Elucidating the Concepts of Thermodynamic Control and Kinetic Control in Chemical Reactions through Theoretical Chemistry Calculations: A Computational Chemistry Experiment on the Diels-Alder Reaction. University Chemistry, doi: 10.3866/PKU.DXHX202309074

    10. [10]

      Yue Wu Jun Li Bo Zhang Yan Yang Haibo Li Xian-Xi Zhang . Research on Kinetic and Thermodynamic Transformations of Organic-Inorganic Hybrid Materials for Fluorescent Anti-Counterfeiting Application information: Introducing a Comprehensive Chemistry Experiment. University Chemistry, doi: 10.3866/PKU.DXHX202403028

    11. [11]

      You Wu Chang Cheng Kezhen Qi Bei Cheng Jianjun Zhang Jiaguo Yu Liuyang Zhang . ZnO/D-A共轭聚合物S型异质结高效光催化产H2O2及其电荷转移动力学研究. Acta Physico-Chimica Sinica, doi: 10.3866/PKU.WHXB202406027

    12. [12]

      Zhenghua ZHAOQin ZHANGYufeng LIUZifa SHIJinzhong GU . Syntheses, crystal structures, catalytic and anti-wear properties of nickel(Ⅱ) and zinc(Ⅱ) coordination polymers based on 5-(2-carboxyphenyl)nicotinic acid. Chinese Journal of Inorganic Chemistry, doi: 10.11862/CJIC.20230342

    13. [13]

      Kaimin WANGXiong GUNa DENGHongmei YUYanqin YEYulu MA . Synthesis, structure, fluorescence properties, and Hirshfeld surface analysis of three Zn(Ⅱ)/Cu(Ⅱ) complexes based on 5-(dimethylamino) isophthalic acid. Chinese Journal of Inorganic Chemistry, doi: 10.11862/CJIC.20240009

    14. [14]

      Weizhong LINGXiangyun CHENWenjing LIUYingkai HUANGYu LI . Syntheses, crystal structures, and catalytic properties of three zinc(Ⅱ), cobalt(Ⅱ) and nickel(Ⅱ) coordination polymers constructed from 5-(4-carboxyphenoxy)nicotinic acid. Chinese Journal of Inorganic Chemistry, doi: 10.11862/CJIC.20240068

    15. [15]

      Xinting XIONGZhiqiang XIONGPanlei XIAOXuliang NIEXiuying SONGXiuguang YI . Synthesis, crystal structures, Hirshfeld surface analysis, and antifungal activity of two complexes Na(Ⅰ)/Cd(Ⅱ) assembled by 5-bromo-2-hydroxybenzoic acid ligands. Chinese Journal of Inorganic Chemistry, doi: 10.11862/CJIC.20240145

    16. [16]

      Jingzhao Cheng Shiyu Gao Bei Cheng Kai Yang Wang Wang Shaowen Cao . 4-氨基-1H-咪唑-5-甲腈修饰供体-受体型氮化碳光催化剂的构建及其高效光催化产氢研究. Acta Physico-Chimica Sinica, doi: 10.3866/PKU.WHXB202406026

    17. [17]

      Ruoxi Sun Yiqian Xu Shaoru Rong Chunmiao Han Hui Xu . The Enchanting Collision of Light and Time Magic: Exploring the Footprints of Long Afterglow Lifetime. University Chemistry, doi: 10.3866/PKU.DXHX202310001

    18. [18]

      Yujia Luo Yunpeng Qi Huiping Xing Yuhu Li . The Use of Viscosity Method for Predicting the Life Expectancy of Xuan Paper-based Heritage Objects. University Chemistry, doi: 10.3866/PKU.DXHX202401037

    19. [19]

      Zizheng LUWanyi SUQin SHIHonghui PANChuanqi ZHAOChengfeng HUANGJinguo PENG . Surface state behavior of W doped BiVO4 photoanode for ciprofloxacin degradation. Chinese Journal of Inorganic Chemistry, doi: 10.11862/CJIC.20230225

    20. [20]

      Qingying Gao Tao Luo Jianyuan Su Chaofan Yu Jiazhu Li Bingfei Yan Wenzuo Li Zhen Zhang Yi Liu . Refinement and Expansion of the Classic Cinnamic Acid Synthesis Experiment. University Chemistry, doi: 10.3866/PKU.DXHX202311074

Metrics
  • PDF Downloads(580)
  • Abstract views(1536)
  • HTML views(21)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return