Citation: CAO Chun-Hui, LIN Rui, ZHAO Tian-Tian, HUANG Zhen, MA Jian-Xin. Preparation and Characterization of Core-Shell Co@Pt/C Catalysts for Fuel Cell[J]. Acta Physico-Chimica Sinica, ;2013, 29(01): 95-101. doi: 10.3866/PKU.WHXB201209272
-
Co@Pt/C core-shell catalysts have been synthesized by a two-step chemical reduction method, followed by heat treatment in a H2 and N2 mixture. High resolution transmission electron microscopy (HR-TEM) and X-ray photoelectron spectroscopy (XPS) techniques were used to characterize the catalyst microstructure and morphology. The results indicate that the core-shell structure of Co rich in core and Pt rich in shell is formed and the nano-particles are highly dispersed on the surface of the carbon support. Heat treatment affects the structure and morphology of the catalysts. The electrocatalytic performance, kinetic characteristics of O2 reduction reaction (ORR), and durability of the catalysts were measured by cyclic voltammetry (CV) and linear sweep voltammetry (LSV) techniques. It was found that the formation of the core-shell structure is favorable for improving the performance and utilization of Pt. The Co@Pt/C catalyst mechanism proceeds by an approximately four-electron pathway in acid solution, through which molecular oxygen is directly reduced to water. Compared with alloy catalysts, the formation of the core-shell structure obviously improves the catalyst durability.
-
-
[1]
(1) Wang, Y.; Chen, K. S.; Mishler, J.; Cho, S. C.; Adroher, X. C.Appl. Energy 2011, 88, 981. doi: 10.1016/j.apenergy.2010.09.030
-
[2]
(2) Wee, J. H.; Lee, K. Y.; Kim, S. H. J. Power Sources 2007, 165,667. doi: 10.1016/j.jpowsour.2006.12.051
-
[3]
(3) Zhang, H. Y.; Cao, C. H.; Zhao, J.; Lin, R.; Ma, J. X. Chin. J. Catal. 2012, 33, 229. [张海艳, 曹春晖, 赵健, 林瑞, 马建新. 催化学报, 2012, 33, 229.]
-
[4]
(4) Carrette, L.; Friedrich, K. A.; Stimming, U. Fuel Cells 2001, 1,15.
-
[5]
(5) Zhang, Z. L.; Yuan, J. N.; Sun, Y. P.; Liu, S. B.; Duan, D. H.;Hao, X. G. Chin. J. Inorg. Chem. 2011, 27, 2413. [张忠林,员娟宁, 孙彦平, 刘世斌, 段东红, 郝晓刚. 无机化学学报,2011, 27, 2413.]
-
[6]
(6) Gao, H. L.; Liao, S. J.; Zeng, J. H.; Liang, Z. X.; Xie, Y. C. Acta Phys. -Chim. Sin. 2010, 26, 3193. [高海丽, 廖世军, 曾建皇,梁振兴, 谢义淳. 物理化学学报, 2010, 26, 3193.] doi: 10.3866/PKU.WHXB20101214
-
[7]
(7) Wang, G. X.;Wu, H. M.;Wexler, D.; Liu, H. K.; Savado , O.J. Alloy. Compd. 2010, 503, L1.
-
[8]
(8) Zhu, H.; Li, X.W.;Wang, F. H. Int. J. Hydrog. Energy 2011, 36,9151. doi: 10.1016/j.ijhydene.2011.04.224
-
[9]
(9) Kristian, N.; Yu, Y. L.; Lee, J. M.; Liu, X.W.;Wang, X.Electrochim. Acta 2010, 56, 1000. doi: 10.1016/j.electacta.2010.09.073
-
[10]
(10) Choi, I.; Ahn, S. H.; Kim, J. J.; Kwon, O. J. Appl. Catal. B: Environ. 2011, 102, 608. doi: 10.1016/j.apcatb.2010.12.047
-
[11]
(11) Dang, D.; Gao, H. L.; Peng, L. J.; Su, Y. L.; Liao, S. J.;Wang, Y.Acta Phys. -Chim. Sin. 2011, 27, 2379. [党岱, 高海丽, 彭良进, 苏允兰, 廖世军, 王晔. 物理化学学报, 2011, 27, 2379.]doi: 10.3866/PKU.WHXB20110922
-
[12]
(12) Sun, D.; He, J. P.; Zhou, J. H.;Wang, T.; Di, Z. Y.; Ding, X. C.Acta Phys. -Chim. Sin. 2010, 26, 1219. [孙盾, 何建平, 周建华, 王涛, 狄志勇, 丁晓春. 物理化学学报, 2010, 26, 1219.]doi: 10.3866/PKU.WHXB20100507
-
[13]
(13) Wu, H. M.;Wexler, D.;Wang, G. X.; Liu, H. K. J. Solid State Electrochem. 2012, 16, 1105. doi: 10.1007/s10008-011-1486-5
-
[14]
(14) Lee, M. H.;Wang, P. S.; Do, J. S. J. Solid State Electrochem.2008, 12, 879. doi: 10.1007/s10008-007-0477-z
-
[15]
(15) Liu, S. B.; Yuan, J. N.; Zhang, Z. L.; Duan, D. H.; Li, Y. B.;Hao, X. G. Chin. J. Inorg. Chem. 2010, 26, 1171. [刘世斌, 员娟宁, 张忠林, 段东红, 李一兵, 郝晓刚. 无机化学学报, 2010,26, 1171.]
-
[16]
(16) Ryan, O'H.; Che, S. Y.; Whitney, C.; Fritz, B. P. Fuel Cell Fundamentals; Publishing House of Electronics Industry:Beijing, 2007; p 196; translated byWang, X. H., Huang, H.[Ryan, O'H., 车硕源, Whitney, C., Fritz, B. P. 燃料电池基础.王晓红, 黄宏, 译. 北京: 电子工业出版社, 2007: 196.]
-
[17]
(17) Moulder, J. F.; Stickle,W. F.; Sobol, P. E.; Bomben, K. D.Handbook of X-ray Photo-electron Spectroscopy; Perkin-ElmerCorporation: Minnesota, 1992; pp 186-187.
-
[18]
(18) Santia , E. I.; Varanda, L. C.; Villullas, M. J. Phys. Chem. C2007, 111, 3146. doi: 10.1021/jp0670081
-
[19]
(19) Kiros, Y. J. Electrochem. Soc. 1996, 143, 2152. doi: 10.1149/1.1836974
-
[20]
(20) Xiong, L.; Manthiram, A. J. Mater. Chem. 2004, 14, 1454. doi: 10.1039/b400968c
-
[21]
(21) Bard, A. J.; Faulkner, L. R. Electrochemical Methods, 2nd ed.;Wiley & Sons: New York, 2001; pp 331-332.
-
[22]
(22) Duong, H. T.; Rigsby, M. A.; Zhou,W. P.;Wieckowski, A.J. Phys. Chem. C 2007, 111, 13460. doi: 10.1021/jp072586i
-
[1]
-
-
[1]
Xinpeng LIU , Liuyang ZHAO , Hongyi LI , Yatu CHEN , Aimin WU , Aikui LI , Hao HUANG . Ga2O3 coated modification and electrochemical performance of Li1.2Mn0.54Ni0.13Co0.13O2 cathode material. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1105-1113. doi: 10.11862/CJIC.20230488
-
[2]
Qi Li , Pingan Li , Zetong Liu , Jiahui Zhang , Hao Zhang , Weilai Yu , Xianluo Hu . Fabricating Micro/Nanostructured Separators and Electrode Materials by Coaxial Electrospinning for Lithium-Ion Batteries: From Fundamentals to Applications. Acta Physico-Chimica Sinica, 2024, 40(10): 2311030-. doi: 10.3866/PKU.WHXB202311030
-
[3]
Kun Xu , Xinxin Song , Zhilei Yin , Jian Yang , Qisheng Song . Comprehensive Experimental Design of Preferential Orientation of Zinc Metal by Heat Treatment for Enhanced Electrochemical Performance. University Chemistry, 2024, 39(4): 192-197. doi: 10.3866/PKU.DXHX202309050
-
[4]
Jiahong ZHENG , Jiajun SHEN , Xin BAI . Preparation and electrochemical properties of nickel foam loaded NiMoO4/NiMoS4 composites. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 581-590. doi: 10.11862/CJIC.20230253
-
[5]
Fengqiao Bi , Jun Wang , Dongmei Yang . Specialized Experimental Design for Chemistry Majors in the Context of “Dual Carbon”: Taking the Assembly and Performance Evaluation of Zinc-Air Fuel Batteries as an Example. University Chemistry, 2024, 39(4): 198-205. doi: 10.3866/PKU.DXHX202311069
-
[6]
Yeyun Zhang , Ling Fan , Yanmei Wang , Zhenfeng Shang . Development and Application of Kinetic Reaction Flasks in Physical Chemistry Experimental Teaching. University Chemistry, 2024, 39(4): 100-106. doi: 10.3866/PKU.DXHX202308044
-
[7]
Yan Li , Xinze Wang , Xue Yao , Shouyun Yu . Kinetic Resolution Enabled by Photoexcited Chiral Copper Complex-Mediated Alkene E→Z Isomerization: A Comprehensive Chemistry Experiment for Undergraduate Students. University Chemistry, 2024, 39(5): 1-10. doi: 10.3866/PKU.DXHX202309053
-
[8]
Jinfu Ma , Hui Lu , Jiandong Wu , Zhongli Zou . Teaching Design of Electrochemical Principles Course Based on “Cognitive Laws”: Kinetics of Electron Transfer Steps. University Chemistry, 2024, 39(3): 174-177. doi: 10.3866/PKU.DXHX202309052
-
[9]
Qingtang ZHANG , Xiaoyu WU , Zheng WANG , Xiaomei WANG . Performance of nano Li2FeSiO4/C cathode material co-doped by potassium and chlorine ions. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1689-1696. doi: 10.11862/CJIC.20240115
-
[10]
Dexin Tan , Limin Liang , Baoyi Lv , Huiwen Guan , Haicheng Chen , Yanli Wang . Exploring Reverse Teaching Practices in Physical Chemistry Experiment Courses: A Case Study on Chemical Reaction Kinetics. University Chemistry, 2024, 39(11): 79-86. doi: 10.12461/PKU.DXHX202403048
-
[11]
Xuzhen Wang , Xinkui Wang , Dongxu Tian , Wei Liu . Enhancing the Comprehensive Quality and Innovation Abilities of Graduate Students through a “Student-Centered, Dual Integration and Dual Drive” Teaching Model: A Case Study in the Course of Chemical Reaction Kinetics. University Chemistry, 2024, 39(6): 160-165. doi: 10.3866/PKU.DXHX202401074
-
[12]
Yiying Yang , Dongju Zhang . Elucidating the Concepts of Thermodynamic Control and Kinetic Control in Chemical Reactions through Theoretical Chemistry Calculations: A Computational Chemistry Experiment on the Diels-Alder Reaction. University Chemistry, 2024, 39(3): 327-335. doi: 10.3866/PKU.DXHX202309074
-
[13]
Hongyi LI , Aimin WU , Liuyang ZHAO , Xinpeng LIU , Fengqin CHEN , Aikui LI , Hao HUANG . Effect of Y(PO3)3 double-coating modification on the electrochemical properties of Li[Ni0.8Co0.15Al0.05]O2. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1320-1328. doi: 10.11862/CJIC.20230480
-
[14]
Yue Wu , Jun Li , Bo Zhang , Yan Yang , Haibo Li , Xian-Xi Zhang . Research on Kinetic and Thermodynamic Transformations of Organic-Inorganic Hybrid Materials for Fluorescent Anti-Counterfeiting Application information: Introducing a Comprehensive Chemistry Experiment. University Chemistry, 2024, 39(6): 390-399. doi: 10.3866/PKU.DXHX202403028
-
[15]
You Wu , Chang Cheng , Kezhen Qi , Bei Cheng , Jianjun Zhang , Jiaguo Yu , Liuyang Zhang . ZnO/D-A共轭聚合物S型异质结高效光催化产H2O2及其电荷转移动力学研究. Acta Physico-Chimica Sinica, 2024, 40(11): 2406027-. doi: 10.3866/PKU.WHXB202406027
-
[16]
Zhihuan XU , Qing KANG , Yuzhen LONG , Qian YUAN , Cidong LIU , Xin LI , Genghuai TANG , Yuqing LIAO . Effect of graphene oxide concentration on the electrochemical properties of reduced graphene oxide/ZnS. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1329-1336. doi: 10.11862/CJIC.20230447
-
[17]
Qin ZHU , Jiao MA , Zhihui QIAN , Yuxu LUO , Yujiao GUO , Mingwu XIANG , Xiaofang LIU , Ping NING , Junming GUO . Morphological evolution and electrochemical properties of cathode material LiAl0.08Mn1.92O4 single crystal particles. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1549-1562. doi: 10.11862/CJIC.20240022
-
[18]
Yong Zhou , Jia Guo , Yun Xiong , Luying He , Hui Li . Comprehensive Teaching Experiment on Electrochemical Corrosion in Galvanic Cell for Chemical Safety and Environmental Protection Course. University Chemistry, 2024, 39(7): 330-336. doi: 10.3866/PKU.DXHX202310109
-
[19]
Kun WANG , Wenrui LIU , Peng JIANG , Yuhang SONG , Lihua CHEN , Zhao DENG . Hierarchical hollow structured BiOBr-Pt catalysts for photocatalytic CO2 reduction. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1270-1278. doi: 10.11862/CJIC.20240037
-
[20]
Yuanchao LI , Weifeng HUANG , Pengchao LIANG , Zifang ZHAO , Baoyan XING , Dongliang YAN , Li YANG , Songlin WANG . Effect of heterogeneous dual carbon sources on electrochemical properties of LiMn0.8Fe0.2PO4/C composites. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 751-760. doi: 10.11862/CJIC.20230252
-
[1]
Metrics
- PDF Downloads(1165)
- Abstract views(2115)
- HTML views(9)