Citation: CAO Chun-Hui, LIN Rui, ZHAO Tian-Tian, HUANG Zhen, MA Jian-Xin. Preparation and Characterization of Core-Shell Co@Pt/C Catalysts for Fuel Cell[J]. Acta Physico-Chimica Sinica, ;2013, 29(01): 95-101. doi: 10.3866/PKU.WHXB201209272 shu

Preparation and Characterization of Core-Shell Co@Pt/C Catalysts for Fuel Cell

  • Received Date: 11 July 2012
    Available Online: 27 September 2012

    Fund Project: 国家自然科学基金(21276199) (21276199)同济大学青年优秀人才基金(2006KJ022) (2006KJ022)上海市重点学科建设项目(B303) (B303)(B08019)资助 (B08019)

  • Co@Pt/C core-shell catalysts have been synthesized by a two-step chemical reduction method, followed by heat treatment in a H2 and N2 mixture. High resolution transmission electron microscopy (HR-TEM) and X-ray photoelectron spectroscopy (XPS) techniques were used to characterize the catalyst microstructure and morphology. The results indicate that the core-shell structure of Co rich in core and Pt rich in shell is formed and the nano-particles are highly dispersed on the surface of the carbon support. Heat treatment affects the structure and morphology of the catalysts. The electrocatalytic performance, kinetic characteristics of O2 reduction reaction (ORR), and durability of the catalysts were measured by cyclic voltammetry (CV) and linear sweep voltammetry (LSV) techniques. It was found that the formation of the core-shell structure is favorable for improving the performance and utilization of Pt. The Co@Pt/C catalyst mechanism proceeds by an approximately four-electron pathway in acid solution, through which molecular oxygen is directly reduced to water. Compared with alloy catalysts, the formation of the core-shell structure obviously improves the catalyst durability.

  • 加载中
    1. [1]

      (1) Wang, Y.; Chen, K. S.; Mishler, J.; Cho, S. C.; Adroher, X. C.Appl. Energy 2011, 88, 981. doi: 10.1016/j.apenergy.2010.09.030

    2. [2]

      (2) Wee, J. H.; Lee, K. Y.; Kim, S. H. J. Power Sources 2007, 165,667. doi: 10.1016/j.jpowsour.2006.12.051

    3. [3]

      (3) Zhang, H. Y.; Cao, C. H.; Zhao, J.; Lin, R.; Ma, J. X. Chin. J. Catal. 2012, 33, 229. [张海艳, 曹春晖, 赵健, 林瑞, 马建新. 催化学报, 2012, 33, 229.]

    4. [4]

      (4) Carrette, L.; Friedrich, K. A.; Stimming, U. Fuel Cells 2001, 1,15.

    5. [5]

      (5) Zhang, Z. L.; Yuan, J. N.; Sun, Y. P.; Liu, S. B.; Duan, D. H.;Hao, X. G. Chin. J. Inorg. Chem. 2011, 27, 2413. [张忠林,员娟宁, 孙彦平, 刘世斌, 段东红, 郝晓刚. 无机化学学报,2011, 27, 2413.]

    6. [6]

      (6) Gao, H. L.; Liao, S. J.; Zeng, J. H.; Liang, Z. X.; Xie, Y. C. Acta Phys. -Chim. Sin. 2010, 26, 3193. [高海丽, 廖世军, 曾建皇,梁振兴, 谢义淳. 物理化学学报, 2010, 26, 3193.] doi: 10.3866/PKU.WHXB20101214

    7. [7]

      (7) Wang, G. X.;Wu, H. M.;Wexler, D.; Liu, H. K.; Savado , O.J. Alloy. Compd. 2010, 503, L1.

    8. [8]

      (8) Zhu, H.; Li, X.W.;Wang, F. H. Int. J. Hydrog. Energy 2011, 36,9151. doi: 10.1016/j.ijhydene.2011.04.224

    9. [9]

      (9) Kristian, N.; Yu, Y. L.; Lee, J. M.; Liu, X.W.;Wang, X.Electrochim. Acta 2010, 56, 1000. doi: 10.1016/j.electacta.2010.09.073

    10. [10]

      (10) Choi, I.; Ahn, S. H.; Kim, J. J.; Kwon, O. J. Appl. Catal. B: Environ. 2011, 102, 608. doi: 10.1016/j.apcatb.2010.12.047

    11. [11]

      (11) Dang, D.; Gao, H. L.; Peng, L. J.; Su, Y. L.; Liao, S. J.;Wang, Y.Acta Phys. -Chim. Sin. 2011, 27, 2379. [党岱, 高海丽, 彭良进, 苏允兰, 廖世军, 王晔. 物理化学学报, 2011, 27, 2379.]doi: 10.3866/PKU.WHXB20110922

    12. [12]

      (12) Sun, D.; He, J. P.; Zhou, J. H.;Wang, T.; Di, Z. Y.; Ding, X. C.Acta Phys. -Chim. Sin. 2010, 26, 1219. [孙盾, 何建平, 周建华, 王涛, 狄志勇, 丁晓春. 物理化学学报, 2010, 26, 1219.]doi: 10.3866/PKU.WHXB20100507

    13. [13]

      (13) Wu, H. M.;Wexler, D.;Wang, G. X.; Liu, H. K. J. Solid State Electrochem. 2012, 16, 1105. doi: 10.1007/s10008-011-1486-5

    14. [14]

      (14) Lee, M. H.;Wang, P. S.; Do, J. S. J. Solid State Electrochem.2008, 12, 879. doi: 10.1007/s10008-007-0477-z

    15. [15]

      (15) Liu, S. B.; Yuan, J. N.; Zhang, Z. L.; Duan, D. H.; Li, Y. B.;Hao, X. G. Chin. J. Inorg. Chem. 2010, 26, 1171. [刘世斌, 员娟宁, 张忠林, 段东红, 李一兵, 郝晓刚. 无机化学学报, 2010,26, 1171.]

    16. [16]

      (16) Ryan, O'H.; Che, S. Y.; Whitney, C.; Fritz, B. P. Fuel Cell Fundamentals; Publishing House of Electronics Industry:Beijing, 2007; p 196; translated byWang, X. H., Huang, H.[Ryan, O'H., 车硕源, Whitney, C., Fritz, B. P. 燃料电池基础.王晓红, 黄宏, 译. 北京: 电子工业出版社, 2007: 196.]

    17. [17]

      (17) Moulder, J. F.; Stickle,W. F.; Sobol, P. E.; Bomben, K. D.Handbook of X-ray Photo-electron Spectroscopy; Perkin-ElmerCorporation: Minnesota, 1992; pp 186-187.

    18. [18]

      (18) Santia , E. I.; Varanda, L. C.; Villullas, M. J. Phys. Chem. C2007, 111, 3146. doi: 10.1021/jp0670081

    19. [19]

      (19) Kiros, Y. J. Electrochem. Soc. 1996, 143, 2152. doi: 10.1149/1.1836974

    20. [20]

      (20) Xiong, L.; Manthiram, A. J. Mater. Chem. 2004, 14, 1454. doi: 10.1039/b400968c

    21. [21]

      (21) Bard, A. J.; Faulkner, L. R. Electrochemical Methods, 2nd ed.;Wiley & Sons: New York, 2001; pp 331-332.

    22. [22]

      (22) Duong, H. T.; Rigsby, M. A.; Zhou,W. P.;Wieckowski, A.J. Phys. Chem. C 2007, 111, 13460. doi: 10.1021/jp072586i


  • 加载中
    1. [1]

      Xinpeng LIULiuyang ZHAOHongyi LIYatu CHENAimin WUAikui LIHao HUANG . Ga2O3 coated modification and electrochemical performance of Li1.2Mn0.54Ni0.13Co0.13O2 cathode material. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1105-1113. doi: 10.11862/CJIC.20230488

    2. [2]

      Qi Li Pingan Li Zetong Liu Jiahui Zhang Hao Zhang Weilai Yu Xianluo Hu . Fabricating Micro/Nanostructured Separators and Electrode Materials by Coaxial Electrospinning for Lithium-Ion Batteries: From Fundamentals to Applications. Acta Physico-Chimica Sinica, 2024, 40(10): 2311030-. doi: 10.3866/PKU.WHXB202311030

    3. [3]

      Kun Xu Xinxin Song Zhilei Yin Jian Yang Qisheng Song . Comprehensive Experimental Design of Preferential Orientation of Zinc Metal by Heat Treatment for Enhanced Electrochemical Performance. University Chemistry, 2024, 39(4): 192-197. doi: 10.3866/PKU.DXHX202309050

    4. [4]

      Jiahong ZHENGJiajun SHENXin BAI . Preparation and electrochemical properties of nickel foam loaded NiMoO4/NiMoS4 composites. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 581-590. doi: 10.11862/CJIC.20230253

    5. [5]

      Fengqiao Bi Jun Wang Dongmei Yang . Specialized Experimental Design for Chemistry Majors in the Context of “Dual Carbon”: Taking the Assembly and Performance Evaluation of Zinc-Air Fuel Batteries as an Example. University Chemistry, 2024, 39(4): 198-205. doi: 10.3866/PKU.DXHX202311069

    6. [6]

      Yeyun Zhang Ling Fan Yanmei Wang Zhenfeng Shang . Development and Application of Kinetic Reaction Flasks in Physical Chemistry Experimental Teaching. University Chemistry, 2024, 39(4): 100-106. doi: 10.3866/PKU.DXHX202308044

    7. [7]

      Yan Li Xinze Wang Xue Yao Shouyun Yu . Kinetic Resolution Enabled by Photoexcited Chiral Copper Complex-Mediated Alkene EZ Isomerization: A Comprehensive Chemistry Experiment for Undergraduate Students. University Chemistry, 2024, 39(5): 1-10. doi: 10.3866/PKU.DXHX202309053

    8. [8]

      Jinfu Ma Hui Lu Jiandong Wu Zhongli Zou . Teaching Design of Electrochemical Principles Course Based on “Cognitive Laws”: Kinetics of Electron Transfer Steps. University Chemistry, 2024, 39(3): 174-177. doi: 10.3866/PKU.DXHX202309052

    9. [9]

      Qingtang ZHANGXiaoyu WUZheng WANGXiaomei WANG . Performance of nano Li2FeSiO4/C cathode material co-doped by potassium and chlorine ions. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1689-1696. doi: 10.11862/CJIC.20240115

    10. [10]

      Dexin Tan Limin Liang Baoyi Lv Huiwen Guan Haicheng Chen Yanli Wang . Exploring Reverse Teaching Practices in Physical Chemistry Experiment Courses: A Case Study on Chemical Reaction Kinetics. University Chemistry, 2024, 39(11): 79-86. doi: 10.12461/PKU.DXHX202403048

    11. [11]

      Xuzhen Wang Xinkui Wang Dongxu Tian Wei Liu . Enhancing the Comprehensive Quality and Innovation Abilities of Graduate Students through a “Student-Centered, Dual Integration and Dual Drive” Teaching Model: A Case Study in the Course of Chemical Reaction Kinetics. University Chemistry, 2024, 39(6): 160-165. doi: 10.3866/PKU.DXHX202401074

    12. [12]

      Yiying Yang Dongju Zhang . Elucidating the Concepts of Thermodynamic Control and Kinetic Control in Chemical Reactions through Theoretical Chemistry Calculations: A Computational Chemistry Experiment on the Diels-Alder Reaction. University Chemistry, 2024, 39(3): 327-335. doi: 10.3866/PKU.DXHX202309074

    13. [13]

      Hongyi LIAimin WULiuyang ZHAOXinpeng LIUFengqin CHENAikui LIHao HUANG . Effect of Y(PO3)3 double-coating modification on the electrochemical properties of Li[Ni0.8Co0.15Al0.05]O2. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1320-1328. doi: 10.11862/CJIC.20230480

    14. [14]

      Yue Wu Jun Li Bo Zhang Yan Yang Haibo Li Xian-Xi Zhang . Research on Kinetic and Thermodynamic Transformations of Organic-Inorganic Hybrid Materials for Fluorescent Anti-Counterfeiting Application information: Introducing a Comprehensive Chemistry Experiment. University Chemistry, 2024, 39(6): 390-399. doi: 10.3866/PKU.DXHX202403028

    15. [15]

      You Wu Chang Cheng Kezhen Qi Bei Cheng Jianjun Zhang Jiaguo Yu Liuyang Zhang . ZnO/D-A共轭聚合物S型异质结高效光催化产H2O2及其电荷转移动力学研究. Acta Physico-Chimica Sinica, 2024, 40(11): 2406027-. doi: 10.3866/PKU.WHXB202406027

    16. [16]

      Zhihuan XUQing KANGYuzhen LONGQian YUANCidong LIUXin LIGenghuai TANGYuqing LIAO . Effect of graphene oxide concentration on the electrochemical properties of reduced graphene oxide/ZnS. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1329-1336. doi: 10.11862/CJIC.20230447

    17. [17]

      Qin ZHUJiao MAZhihui QIANYuxu LUOYujiao GUOMingwu XIANGXiaofang LIUPing NINGJunming GUO . Morphological evolution and electrochemical properties of cathode material LiAl0.08Mn1.92O4 single crystal particles. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1549-1562. doi: 10.11862/CJIC.20240022

    18. [18]

      Yong Zhou Jia Guo Yun Xiong Luying He Hui Li . Comprehensive Teaching Experiment on Electrochemical Corrosion in Galvanic Cell for Chemical Safety and Environmental Protection Course. University Chemistry, 2024, 39(7): 330-336. doi: 10.3866/PKU.DXHX202310109

    19. [19]

      Kun WANGWenrui LIUPeng JIANGYuhang SONGLihua CHENZhao DENG . Hierarchical hollow structured BiOBr-Pt catalysts for photocatalytic CO2 reduction. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1270-1278. doi: 10.11862/CJIC.20240037

    20. [20]

      Yuanchao LIWeifeng HUANGPengchao LIANGZifang ZHAOBaoyan XINGDongliang YANLi YANGSonglin WANG . Effect of heterogeneous dual carbon sources on electrochemical properties of LiMn0.8Fe0.2PO4/C composites. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 751-760. doi: 10.11862/CJIC.20230252

Metrics
  • PDF Downloads(1165)
  • Abstract views(2116)
  • HTML views(9)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return