Citation: ZHANG Zhu-Qing. Folding Mechanism of De novo Designed Proteins[J]. Acta Physico-Chimica Sinica, ;2012, 28(10): 2381-2389. doi: 10.3866/PKU.WHXB201209144
-
Protein de novo design and protein folding are two different means to investigate“sequencestructure- function”relationship of proteins, which is one of the most important focuses in structural biology. The successful achievements in protein de novo design indicate the understanding accuracy of the knowledge in protein structure and interaction, while most of those designed proteins show different folding kinetic features from nature occurring proteins, which implies that there are still many challenges to the aim of getting them to play expected biological function. In this review, the status of research and development for protein de novo design, as well as the study progress of protein folding in experimental, theoretical and simulation aspects, have been introduced. Further, the investigations of folding mechanism of de novo designed proteins have been reviewed, and the new clue has been proposed that systematically investigation of the essence of different folding mechanism between the two types of protein would help to provide useful insight for more efficient protein rotational design.
-
-
[1]
(1) Anfinsen, C. B.; Haber, E.; Sela, M.; White, F. H., Jr. Proc. Natl. Acad. Sci. U. S. A. 1961, 47, 1309. doi: 10.1073/pnas.47.9.1309
-
[2]
(2) Anfinsen, C. B. Science 1973, 181, 223. doi: 10.1126/science.181.4096.223
-
[3]
(3) Berman, H. M.;Westbrook, J.; Feng, Z.; Gilliland, G.; Bhat, T.N.;Weissig, H.; Shindyalov, I. N.; Bourne, P. E. Nucleic Acids Res. 2000, 28, 235. doi: 10.1093/nar/28.1.235
-
[4]
(4) Uversky, V. N. Protein Sci. 2002, 11, 739. doi: 10.1110/ps.4210102
-
[5]
(5) Huang, Y. Q.; Liu, Z. R. Acta Phys. -Chim. Sin. 2010, 26, 2061.[黄永棋, 刘志荣. 物理化学学报, 2010, 26, 2061.]
-
[6]
(6) Moult, J.; Pedersen, J. T.; Judson, R.; Fidelis, K. Proteins 1995,23, R2.
-
[7]
(7) Minton, A. P. Curr. Opin. Struct. Biol. 2000, 10, 34. doi: 10.1016/S0959-440X(99)00045-7
-
[8]
(8) Jackson, S. E.; Fersht, A. R. Biochemistry 1991, 30, 10428. doi: 10.1021/bi00107a010
-
[9]
(9) Leopold, P. E.; Montal, M.; Onuchic, J. N. Proc. Natl. Acad. Sci. U. S. A. 1992, 89, 8721. doi: 10.1073/pnas.89.18.8721
-
[10]
(10) Dill, K. A.; Chan, H. S. Nat. Struct. Biol. 1997, 4, 10. doi: 10.1038/nsb0197-10
-
[11]
(11) Duan, Y.; Kollman, P. A. Science 1998, 282, 740. doi: 10.1126/science.282.5389.740
-
[12]
(12) Shaw, D. E.; Maragakis, P.; Lindorff-Larsen, K.; Piana, S.; Dror,R. O.; Eastwood, M. P.; Bank, J. A.; Jumper, J. M.; Salmon, J.K.; Shan, Y.;Wriggers,W. Science 2010, 330, 341. doi: 10.1126/science.1187409
-
[13]
(13) Lindorff-Larse, K.; Piana, S.; Dror, R. O.; Shaw, D. E. Science2011, 334, 517. doi: 10.1126/science.1208351
-
[14]
(14) Shortle, D.; Dimaio, D.; Nathans, D. Annu. Rev. Genet. 1981,15, 265. doi: 10.1146/annurev.ge.15.120181.001405
-
[15]
(15) Leatherbarrow, R. J.; Fersht, A. R. Protein Eng. 1986, 1, 7. doi: 10.1093/protein/1.1.7
-
[16]
(16) Ho, S. P.; DeGrado,W. F. J. Am. Chem. Soc. 1987, 109, 6751.doi: 10.1021/ja00256a032
-
[17]
(17) Ramirez-Alvarado, M.; Blanco, F. J.; Serrano, L. Nat. Struct. Biol. 1996, 3, 604. doi: 10.1038/nsb0796-604
-
[18]
(18) Floudas, C. A. Biotechnol. Bioeng. 2007, 97, 207. doi: 10.1002/bit.21411
-
[19]
(19) Zhang, Y. Curr. Opin. Struct. Biol. 2008, 18, 342. doi: 10.1016/j.sbi.2008.02.004
-
[20]
(20) Floudas, C. A.; Fung, H. K.; McAllister, S. R.; Monnigmann,M.; Rajgaria, R. Chem. Eng. Sci. 2006, 61, 966.
-
[21]
(21) Shakhnovich, E. Chem. Rev. 2006, 106, 1559. doi: 10.1021/cr040425u
-
[22]
(22) Dill, K. A.; Ozkan, S. B.; Shell, M. S.; Thomas, R.W. Annu. Rev. Biophys. 2008, 37, 289. doi: 10.1146/annurev.biophys.37.092707.153558
-
[23]
(23) Thirumalai, D.; O'Brien E. P.; Morrison, G.; Hyeon, C. Annu. Rev. Biophys. 2010, 39, 159. doi: 10.1146/annurev-biophys-051309-103835
-
[24]
(24) Butterfoss, G. L.; Kuhlman, B. Annu. Rev. Biophys. Biomol. Struct. 2006, 35, 49. doi: 10.1146/annurev.biohhys.35.040405.102046
-
[25]
(25) Pantazes, R. J.; Grisewood, M. J.; Maranas, C. D. Curr. Opin. Struct. Biol. 2011, 21, 467. doi: 10.1016/j.sbi.2011.04.005
-
[26]
(26) Lai, L. H. Structure Prediction and Molecular Design of Proteins; Peking University Press: Beijing, 1993. [来鲁华.蛋白质的结构预测与分子设计. 北京: 北京大学出版社,1993.]
-
[27]
(27) Chou, P. Y.; Fasman, G. D. Biochemistry 1974, 13, 222. doi: 10.1021/bi00699a002
-
[28]
(28) Richardson, J. S.; Richardson, D. C. Science 1988, 240, 1648.doi: 10.1126/science.3381086
-
[29]
(29) Kumar, S.; Bansal, M. Proteins 1998, 31, 460. doi: 10.1002/(SICI)1097-0134(19980601)31:4<460::AID-PROT12>3.0.CO;2-D
-
[30]
(30) liaei, B.; Minuchehr, Z. FEBS Lett. 2003, 537, 121. doi: 10.1016/S0014-5793(03)00105-4
-
[31]
(31) Fonseca, N. A.; Camacho, R.; Magalhaes, A. L. Proteins 2008,70, 188.
-
[32]
(32) Qi, Y. F.; Liang, H. H.; Han, X. F.; Lai, L. L. Protein Pept. Lett.2012, 19, 345. doi: 10.2174/092986612799363118
-
[33]
(33) Ho, S. P.; DeGrado,W. F. J. Am. Chem. Soc. 1987, 109, 6751.doi: 10.1021/ja00256a032
-
[34]
(34) Hecht, M. H.; Richardson, J. S.; Richardson, D. C.; Ogden, R.C. Science 1990, 249, 884. doi: 10.1126/science.2392678
-
[35]
(35) Fezoui, Y.;Weaver, D. L.; Osterhout, J. J. Proc. Natl. Acad. Sci. U. S. A. 1994, 91, 3675. doi: 10.1073/pnas.91.9.3675
-
[36]
(36) Bryson, J.W.; Desjarlais, J. R.; Handel, T. M.; DeGrado,W. F.Protein Sci. 1998, 7, 1404. doi: 10.1002/pro.5560070617
-
[37]
(37) Moser, R.; Thomas, R. M.; Gutte, B. FEBS Lett. 1983, 157,247. doi: 10.1016/0014-5793(83)80555-9
-
[38]
(38) Blanco, F. J.; Jimenez, M. A.; Herranz, J.; Rico, M.; Santoro, J.;Nieto, J. L. J. Am. Chem. Soc. 1993, 115, 5887. doi: 10.1021/ja00066a092
-
[39]
(39) Blanco, F. J.; Rivas, G.; Serrano, L. Nat. Struct. Biol. 1994, 1,584. doi: 10.1038/nsb0994-584
-
[40]
(40) Ramirez-Alvarado, M.; Blanco, F. J.; Serrano, L. Nat. Struct. Biol. 1996, 3, 604. doi: 10.1038/nsb0796-604
-
[41]
(41) Kortemme, T.; Ramirez-Alvarado, M.; Serrano, L. Science1998, 281, 253. doi: 10.1126/science.281.5374.253
-
[42]
(42) Carulla, N.;Woodward, C.; Barany, G. Protein. Sci. 2002, 11,1539. doi: 10.1110/ps.4440102
-
[43]
(43) Dahiyat, B. I.; Mayo, S. L. Science 1997, 278, 82. doi: 10.1126/science.278.5335.82
-
[44]
(44) Riddle, D. S.; Santia , J. V.; Bray-Hall, S. T.; Doshi, N.;Grantcharova, V. P.; Yi, Q.; Baker, D. Nat. Struct. Biol. 1997, 4,805. doi: 10.1038/nsb1097-805
-
[45]
(45) Kim, D. E.; Gu, H.; Baker, D. Proc. Natl. Acad. Sci. U. S. A.1998, 95, 4982. doi: 10.1073/pnas.95.9.4982
-
[46]
(46) Dantas, G.; Kuhlman, B.; Callender, D.;Wong, M.; Baker, D.J. Mol. Biol. 2003, 332, 449. doi: 10.1016/S0022-2836(03)00888-X
-
[47]
(47) Kuhlman, B.; Dantas, G.; Ireton, G. C.; Varani, G.; Stoddard, B.L.; Baker, D. Science 2003, 302, 1364. doi: 10.1126/science.1089427
-
[48]
(48) Liang, H.; Chen, H.; Fan, K.;Wei, P.; Guo, X.; Jin, C.; Zeng, C.;Tang, C.; Lai, L. Angew. Chem. Int. Edit. 2009, 48, 3301. doi: 10.1002/anie.200805476
-
[49]
(49) Zhu, C.; Zhang, C.; Liang, H.; Lai, L. Protein & Cell 2011, 2,1006. doi: 10.1007/s13238-011-1121-3
-
[50]
(50) Samish, I.; MacDermaid, M.; Perez-Aguilar, J. M.; Saven, J. G.Annu. Rev. Phys. Chem. 2011, 62, 129. doi: 10.1146/annurevphyschem-032210-103509
-
[51]
(51) Li, H.; Helling, R.; Tang, C.;Wingreen, N. Science 1996, 273,666. doi: 10.1126/science.273.5275.666
-
[52]
(52) Saven, J. G. Chem. Rev. 2011, 101, 3113.
-
[53]
(53) Hellinga, H.W. Proc. Natl. Acad. Sci. U. S. A. 1997, 94, 10015.doi: 10.1073/pnas.94.19.10015
-
[54]
(54) Zhang, C. S.; Lai, L. H. Biochem. Soc. Trans. 2011, 39, 1382.doi: 10.1042/BST0391382
-
[55]
(55) Zhang, C. S.; Lai, L. H. Proteins 2012, 80, 1078. doi: 10.1002/prot.24009
-
[56]
(56) Robertson, D. E.; Farid, R. S.; Moser, C. C.; Urbauer, J. L.;Mulholland, S. E.; Pidikiti, R.; Lear, J. D.;Wand, A. J.;DeGrado,W. F.; Dutton, P. L. Nature 1994, 368, 425. doi: 10.1038/368425a0
-
[57]
(57) Reynolds, K. A.; Hanes, M. S.; Thomson, J. M.; Antczak, A. J.;Berger, J. M.; Bonomo, R. A.; Kirsch, J. F.; Handel, T. M.J. Mol. Biol. 2008, 382, 1265. doi: 10.1016/j.jmb.2008.05.051
-
[58]
(58) Liu, S.; Zhu, X.; Liang, H.; Cao, A.; Chang, Z.; Lai, L. Proc. Natl. Acad. Sci. U. S. A. 2007, 104, 5330. doi: 10.1073/pnas.0606198104
-
[59]
(59) Bai, H. J.; Lai, L. H. Acta Phys. -Chim. Sin. 2010, 26, 1988.[白红军, 来鲁华. 物理化学学报, 2010, 26, 1988.] doi: 10.3866/PKU.WHXB20100725
-
[60]
(60) Jiang, L.; Althoff, E. A.; Clemente, F. R.; Doyle, L.;Rothlisberger, D.; Zanghellini, A.; Gallaher, J. L.; Betker, J. L.;Tanaka, F.; Barbas, C. F., III; Hilvert, D.; Houk, K. N.;Stoddard, B. L.; Baker, D. Science 2008, 319, 1387. doi: 10.1126/science.1152692
-
[61]
(61) Stefani, M.; Dobson, C. M. J. Mol. Med. 2003, 81, 678. doi: 10.1007/s00109-003-0464-5
-
[62]
(62) Levinthal, C. J. Chem. Phys. 1968, 65, 44.
-
[63]
(63) Viguera, A. R.; Martinez, J. C.; Filimonov, V. V.; Mateo, P. L.;Serrano, L. Biochemistry 1994, 33, 2142. doi: 10.1021/bi00174a022
-
[64]
(64) Otzen, D. E.; Kristensen, O.; Proctor, M.; Oliveberg, M.Biochemistry 1999, 38, 6499. doi: 10.1021/bi982819j
-
[65]
(65) Plaxco, K.W.; Baker, D. Proc. Natl. Acad. Sci. U. S. A. 1998,95, 13591. doi: 10.1073/pnas.95.23.13591
-
[66]
(66) Taverna, D. M.; ldstein, R. A. Proteins 2002, 46, 105. doi: 10.1002/prot.10016
-
[67]
(67) Matouschek, A.; Kellis, J. T.; Serrano, L.; Fersht, A. R. Nature1989, 340, 122. doi: 10.1038/340122a0
-
[68]
(68) Fersht, A. R.; Matouschek, A.; Serrano, L. J. Mol. Biol. 1992,224, 771. doi: 10.1016/0022-2836(92)90561-W
-
[69]
(69) Scaloni, F.; Federici, L.; Brunori, M.; Gianni, S. Proc. Natl. Acad. Sci. U. S. A. 2010, 95, 4982.
-
[70]
(70) Morris, E. R.; Searle, M. S. Curr. Protoc. Protein. Sci. 2012, 28,Unit 28.2.1.
-
[71]
(71) mez-Hens, A.; Perez-Bendito, D. Anal. Chim. Acta 1991,242, 147. doi: 10.1016/0003-2670(91)87060-K
-
[72]
(72) Bai, Y.W.; Sosnick, T. R.; Mayne, L.; Englander, S.W. Science1995, 269, 192. doi: 10.1126/science.7618079
-
[73]
(73) Gai, F.; Du, D.; Xu, Y. Methods. Mol. Biol. 2007, 350, 1.
-
[74]
(74) Borgia, A.;Williams, P. M.; Clarke, J. Annu. Rev. Biochem.2008, 77, 101. doi: 10.1146/annurev.biochem.77.060706.093102
-
[75]
(75) Chung, H. S.; McHale, K.; Louis, J. M.; Eaton,W. A. Science2012, 335, 981. doi: 10.1126/science.1215768
-
[76]
(76) Onuchic, J. N.; Luthey-Schulten, Z.;Wolynes, P. G. Annu. Rev. Phys. Chem. 1997, 48, 545. doi: 10.1146/annurev.physchem.48.1.545
-
[77]
(77) Gsponer, J.; Vendruscolo, M. Protein Pept. Lett. 2006, 13, 287.doi: 10.2174/092986606775338407
-
[78]
(78) Dill, K. A. Biochemistry 1985, 24, 1501. doi: 10.1021/bi00327a032
-
[79]
(79) Clementi, C. Curr. Opin. Struct. Biol. 2008, 18, 10. doi: 10.1016/j.sbi.2007.10.005
-
[80]
(80) Ueeda, Y.; Taketomi, H.; Gō, N. Biopolymers 1978, 17, 1531.doi: 10.1002/bip.1978.360170612
-
[81]
(81) Plaxco, K.W.; Simons, K. T.; Baker, D. J. Mol. Biol. 1998, 277,985. doi: 10.1006/jmbi.1998.1645
-
[82]
(82) Clementi, C.; Nymeyer, H.; Onuchic, J. N. J. Mol. Biol. 2000,298, 937. doi: 10.1006/jmbi.2000.3693
-
[83]
(83) Hills, R. D., Jr.; Brooks, C. L., III. Int. J. Mol. Sci. 2009, 10,889. doi: 10.3390/ijms10030889
-
[84]
(84) Chan, H. S.; Zhang, Z.;Wallin, S.; Liu, Z. Annu. Rev. Phys. Chem. 2011, 62, 301. doi: 10.1146/annurev-physchem-032210-103405
-
[85]
(85) Cho, S. S.; Levy, Y.;Wolynes, P. G. Proc. Natl. Acad. Sci. U. S. A. 2009, 106, 434. doi: 10.1073/pnas.0810218105
-
[86]
(86) Cho, S. S.;Weinkam, P.;Wolynes, P. G. Proc. Natl. Acad. Sci. U. S. A. 2008, 105, 118. doi: 10.1073/pnas.0709376104
-
[87]
(87) Zuo, G.;Wang, J.;Wang,W. Proteins 2006, 63, 165. doi: 10.1002/prot.20857
-
[88]
(88) Badasyan, A.; Liu, Z.; Chan, H. S. J. Mol. Biol. 2008, 384, 512.doi: 10.1016/j.jmb.2008.09.023
-
[89]
(89) Liu, Z.; Chan, H. S. J. Mol. Biol. 2005, 349, 872. doi: 10.1016/j.jmb.2005.03.084
-
[90]
(90) Ferguson, A.; Liu, Z.; Chan, H. S. J. Mol. Biol. 2009, 389, 619.doi: 10.1016/j.jmb.2009.04.011
-
[91]
(91) Zarrine-Afsar, A.;Wallin, S.; Neculai, A. M.; Neudecker, P.;Howell, P. L.; Davidson, A. R.; Chan, H. S. Proc. Natl. Acad. Sci. U. S. A. 2008, 105, 9999. doi: 10.1073/pnas.0801874105
-
[92]
(92) Zarrine-Afsar, A.; Zhang, Z.; Schweiker, K. L.; Makhatadze, G.I.; Davidson, A. R.; Chan, H. S. Proteins 2012, 80, 858. doi: 10.1002/prot.23243
-
[93]
(93) Su, J. G.; Chen,W. Z.;Wang, C. X. Proteins 2010, 78, 2157.
-
[94]
(94) Azia, A.; Levy, Y. J. Mol. Biol. 2009, 393, 527. doi: 10.1016/j.jmb.2009.08.010
-
[95]
(95) Liu, Z.; Reddy, G.; O'Brien, E. P.; Thirumalai, D. Proc. Natl. Acad. Sci. U. S. A. 2011, 108, 7787. doi: 10.1073/pnas.1019500108
-
[96]
(96) Liu, Z.; Reddy, G.; Thirumalai, D. J. Phys. Chem. B 2012, 116,6707. doi: 10.1021/jp211941b
-
[97]
(97) Wu, L.; Li,W.; Liu, F.; Zhang, J.;Wang, J.;Wang,W. J. Chem. Phys. 2009, 131, 065105. doi: 10.1063/1.3200952
-
[98]
(98) Wu, L.; Zhang, J.;Wang, J.; Li,W. F.;Wang,W. Phys. Rev. E2007, 75, 031914. doi: 10.1103/PhysRevE.75.031914
-
[99]
(99) Wu, L.; Zhang, J.; Qin, M.; Liu, F.;Wang,W. J. Chem. Phys.2008, 128, 235103. doi: 10.1063/1.2943202
-
[100]
(100) McCammon, J. A.; Gelin, B. R.; Karplus, M. Nature 1977,267, 585. doi: 10.1038/267585a0
-
[101]
(101) Zhu, Y.; Alonso, D. O.; Maki, K.; Huang, C. Y.; Lahr, S. J.;Daggett, V.; Roder, H.; DeGrado,W. F.; Gai, F. Proc. Natl. Acad. Sci. U. S. A. 2003, 100, 15486. doi: 10.1073/pnas.2136623100
-
[102]
(102) Zhu, Y.; Fu, X.;Wang, T.; Tamura, A.; Takada, S.; Saven, J. G.;Gai, F. Chem. Phys. 2004, 307, 99. doi: 10.1016/j.chemphys.2004.05.008
-
[103]
(103) Wang, T.; Zhu, Y.; Gai, F. J. Phys. Chem. B 2004, 108, 3694.doi: 10.1021/jp049652q
-
[104]
(104) Gillespie, B.; Vu, D. M.; Shah, P. S.; Marshall, S. A.; Dyer, R.B.; Mayo, S. L.; Plaxco, K.W. J. Mol. Biol. 2003, 330, 813.doi: 10.1016/S0022-2836(03)00616-8
-
[105]
(105) Scalley-Kim, M.; Baker, D. J. Mol. Biol. 2004, 338, 573. doi: 10.1016/j.jmb.2004.02.055
-
[106]
(106) Sadqi, M.; de Alba, E.; Perez-Jimenez, R.; Sanchez-Ruiz, J.M.; Muñoz, V. Proc. Natl. Acad. Sci. U. S. A. 2009, 106, 4127.doi: 10.1073/pnas.0812108106
-
[107]
(107) Watters, A. L.; Deka, P.; Corrent, C.; Callender, D.; Varani, G.;Sosnick, T.; Baker, D. Cell 2007, 128, 613. doi: 10.1016/j.cell.2006.12.042
-
[108]
(108) Zhang, Z.; Chan, H. S. Biophys. J. 2009, 96, L25.
-
[109]
(109) Zhang, Z.; Chan, H. S. Proc. Natl. Acad. Sci. U. S. A. 2010,107, 2920. doi: 10.1073/pnas.0911844107
-
[110]
(110) Qi, Y.; Huang, Y.; Liang, H.; Liu, Z.; Lai, L. Biophys. J. 2010,98, 321. doi: 10.1016/j.bpj.2009.10.018
-
[1]
-
-
[1]
Xinyi Hong , Tailing Xue , Zhou Xu , Enrong Xie , Mingkai Wu , Qingqing Wang , Lina Wu . Non-Site-Specific Fluorescent Labeling of Proteins as a Chemical Biology Experiment. University Chemistry, 2024, 39(4): 351-360. doi: 10.3866/PKU.DXHX202310010
-
[2]
Jinfu Ma , Hui Lu , Jiandong Wu , Zhongli Zou . Teaching Design of Electrochemical Principles Course Based on “Cognitive Laws”: Kinetics of Electron Transfer Steps. University Chemistry, 2024, 39(3): 174-177. doi: 10.3866/PKU.DXHX202309052
-
[3]
Shule Liu . Application of SPC/E Water Model in Molecular Dynamics Teaching Experiments. University Chemistry, 2024, 39(4): 338-342. doi: 10.3866/PKU.DXHX202310029
-
[4]
Yaling Chen . Basic Theory and Competitive Exam Analysis of Dynamic Isotope Effect. University Chemistry, 2024, 39(8): 403-410. doi: 10.3866/PKU.DXHX202311093
-
[5]
Yeyun Zhang , Ling Fan , Yanmei Wang , Zhenfeng Shang . Development and Application of Kinetic Reaction Flasks in Physical Chemistry Experimental Teaching. University Chemistry, 2024, 39(4): 100-106. doi: 10.3866/PKU.DXHX202308044
-
[6]
Xuzhen Wang , Xinkui Wang , Dongxu Tian , Wei Liu . Enhancing the Comprehensive Quality and Innovation Abilities of Graduate Students through a “Student-Centered, Dual Integration and Dual Drive” Teaching Model: A Case Study in the Course of Chemical Reaction Kinetics. University Chemistry, 2024, 39(6): 160-165. doi: 10.3866/PKU.DXHX202401074
-
[7]
Dexin Tan , Limin Liang , Baoyi Lv , Huiwen Guan , Haicheng Chen , Yanli Wang . Exploring Reverse Teaching Practices in Physical Chemistry Experiment Courses: A Case Study on Chemical Reaction Kinetics. University Chemistry, 2024, 39(11): 79-86. doi: 10.12461/PKU.DXHX202403048
-
[8]
Yiying Yang , Dongju Zhang . Elucidating the Concepts of Thermodynamic Control and Kinetic Control in Chemical Reactions through Theoretical Chemistry Calculations: A Computational Chemistry Experiment on the Diels-Alder Reaction. University Chemistry, 2024, 39(3): 327-335. doi: 10.3866/PKU.DXHX202309074
-
[9]
Yue Wu , Jun Li , Bo Zhang , Yan Yang , Haibo Li , Xian-Xi Zhang . Research on Kinetic and Thermodynamic Transformations of Organic-Inorganic Hybrid Materials for Fluorescent Anti-Counterfeiting Application information: Introducing a Comprehensive Chemistry Experiment. University Chemistry, 2024, 39(6): 390-399. doi: 10.3866/PKU.DXHX202403028
-
[10]
Zeyu XU , Anlei DANG , Bihua DENG , Xiaoxin ZUO , Yu LU , Ping YANG , Wenzhu YIN . Evaluation of the efficacy of graphene oxide quantum dots as an ovalbumin delivery platform and adjuvant for immune enhancement. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1065-1078. doi: 10.11862/CJIC.20240099
-
[11]
You Wu , Chang Cheng , Kezhen Qi , Bei Cheng , Jianjun Zhang , Jiaguo Yu , Liuyang Zhang . ZnO/D-A共轭聚合物S型异质结高效光催化产H2O2及其电荷转移动力学研究. Acta Physico-Chimica Sinica, 2024, 40(11): 2406027-. doi: 10.3866/PKU.WHXB202406027
-
[12]
Yan Li , Xinze Wang , Xue Yao , Shouyun Yu . Kinetic Resolution Enabled by Photoexcited Chiral Copper Complex-Mediated Alkene E→Z Isomerization: A Comprehensive Chemistry Experiment for Undergraduate Students. University Chemistry, 2024, 39(5): 1-10. doi: 10.3866/PKU.DXHX202309053
-
[13]
Wanqun Hu , Pingping Zhu , Yuan Zheng , Wanqun Zhang , Wei Shao , Hong Wu , Qiang Zhou , Kaiping Yang , Xiang Sheng . Design and Practice of Ideological and Political Case Study in Instrumental Analysis Experiment Course: the Extraction and Structural Identification of Artemisinin. University Chemistry, 2024, 39(2): 203-207. doi: 10.3866/PKU.DXHX202310062
-
[14]
Xuan Zhou , Yi Fan , Zhuoqi Jiang , Zhipeng Li , Guowen Yuan , Laiying Zhang , Xu Hou . Liquid Gating Mechanism and Basic Properties Characterization: a New Experimental Design for Interface and Surface Properties in the Chemistry “101 Plan”. University Chemistry, 2024, 39(10): 113-120. doi: 10.12461/PKU.DXHX202407111
-
[15]
Li Jiang , Changzheng Chen , Yang Su , Hao Song , Yanmao Dong , Yan Yuan , Li Li . Electrochemical Synthesis of Polyaniline and Its Anticorrosive Application: Improvement and Innovative Design of the “Chemical Synthesis of Polyaniline” Experiment. University Chemistry, 2024, 39(3): 336-344. doi: 10.3866/PKU.DXHX202309002
-
[16]
Qi Wang , Yicong Gao , Feng Lu , Quli Fan . Preparation and Performance Characterization of the Second Near-Infrared Phototheranostic Probe: A New Design and Teaching Practice of Polymer Chemistry Comprehensive Experiment. University Chemistry, 2024, 39(11): 342-349. doi: 10.12461/PKU.DXHX202404141
-
[17]
Yan Liu , Yuexiang Zhu , Luhua Lai . Introduction to Blended and Small-Class Teaching in Structural Chemistry: Exploring the Structure and Properties of Crystals. University Chemistry, 2024, 39(3): 1-4. doi: 10.3866/PKU.DXHX202306084
-
[18]
Zitong Chen , Zipei Su , Jiangfeng Qian . Aromatic Alkali Metal Reagents: Structures, Properties and Applications. University Chemistry, 2024, 39(8): 149-162. doi: 10.3866/PKU.DXHX202311054
-
[19]
Ruming Yuan , Pingping Wu , Laiying Zhang , Xiaoming Xu , Gang Fu . Patriotic Devotion, Upholding Integrity and Innovation, Wholeheartedly Nurturing the New: The Ideological and Political Design of the Experiment on Determining the Thermodynamic Functions of Chemical Reactions by Electromotive Force Method. University Chemistry, 2024, 39(4): 125-132. doi: 10.3866/PKU.DXHX202311057
-
[20]
Kun WANG , Wenrui LIU , Peng JIANG , Yuhang SONG , Lihua CHEN , Zhao DENG . Hierarchical hollow structured BiOBr-Pt catalysts for photocatalytic CO2 reduction. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1270-1278. doi: 10.11862/CJIC.20240037
-
[1]
Metrics
- PDF Downloads(659)
- Abstract views(1980)
- HTML views(2)