Citation: GUO Yan, FU Ying-Qiang, SUN Yin-Lu, CHEN Tian-Nan, ZHAO Jian-Wei. Theoretical Simulation on the Chromatographic System Based on the Random Diffusion of the Separating Particles[J]. Acta Physico-Chimica Sinica doi: 10.3866/PKU.WHXB201209141 shu

Theoretical Simulation on the Chromatographic System Based on the Random Diffusion of the Separating Particles

  • Received Date: 16 July 2012
    Available Online: 14 September 2012

    Fund Project: 国家自然科学基金(51071084, 21273113, 21205062) (51071084, 21273113, 21205062)江苏省高校自然科学基金(10KJB150010) (10KJB150010)南京大学生命分析化学国家重点实验室开放基金(KLACLS1009)资助项目 (KLACLS1009)

  • In order to dynamically track the trajectory of diffusing molecules in a chromatography system, and to thoroughly understand its influence on chromatographic dynamics, we have developed software based on the framework of random walks in a confined space, with which the diffusion processes have been simulated. The influence of the filling rates, the form of the stationary phase, and the column length of a packed column on the chromatographic dynamics have been discussed based on these simulation results. It was concluded that shorter column lengths and larger filling rates result in a higher column efficiency. The particles to be separated normally show basic diffusion characteristics in the confined space. However, their flow behavior will increase with increasing external pressure. The simulation results indicate that the influence of the filling rate of the stationary phase and the column length on chromatographic dynamic behavior is similar to those seen in experiment, whereas the form of the stationary phase only has a slight effect because of the same close-packed barrier arrangement. This simulation method we proposed has some significance for the development of high-performance chromatography and novel separation technologies.

  • 加载中
    1. [1]

      (1) Grill, L.; Dyer, M.; Lafferentz, L.; Persson, M.; Peters, M. V.;Hecht, S. Nat. Nanotechnol. 2007, 2, 687. doi: 10.1038/nnano.2007.346

    2. [2]

      (2) Yariv, E.; Ben-Dov, G.; Dorfman, K. D. Europhys. Lett. 2005,71 (6), 1008. doi: 10.1209/epl/i2005-10171-6

    3. [3]

      (3) Corma, A.; Díaz-Cabañas, M. J.; Jordá, J. L.; Martínez, C.;Moliner, M. Nature 2006, 443, 842. doi: 10.1038/nature05238

    4. [4]

      (4) Ridgway, D.; Broderick, G.; Lopez-Campistrous, A.; Ruaini,M.;Winter, P.; Hamilton, M.; Boulanger, P.; Kovalenko, A.;Ellison, M. J. Biophys. J. 2008, 94 (10), 3748. doi: 10.1529/biophysj.107.116053

    5. [5]

      (5) Persson, A. I.; Larsson, M.W.; Stenström, S.; Ohlsson, B. J.;Samuelson, L.;Wallenberg, L. R. Nat. Mater. 2004, 3, 677. doi: 10.1038/nmat1220

    6. [6]

      (6) Chou, C. F.; Bakajin, O.; Turner, S.W. P.; Duke, T. A. J.; Chan,S. S.; Cox, E. C.; Craighead, H. G.; Austin, R. H. Proc. Natl. Acad. Sci. U. S. A. 1999, 96 (23), 13762.

    7. [7]

      (7) Wang, F. Y.; Liu, Y. H.; Yin, X.;Wang, N.;Wang, D. X.; Gao, Y.J.; Zhao, J.W. J. Appl. Phys. 2010, 108, 074311. doi: 10.1063/1.3477323

    8. [8]

      (8) Liu, Y. H.; Zhao, J.W.;Wang, F. Y. Phys. Rev. B 2009, 80,1154117.

    9. [9]

      (9) Rao, P. S. C.; Jessup, R. E.; Addiscott, T. M. Soil Sci. 1982, 133,342. doi: 10.1097/00010694-198206000-00002

    10. [10]

      (10) Safford, R. E.; Bassingthwaighte, E. A.; Bassingthwaighte, J. B.J. Gen. Physiol. 1978, 72, 513. doi: 10.1085/jgp.72.4.513

    11. [11]

      (11) Santamaria, F.;Wils, S.; De Schutter, E.; Augustine, G. J.Neuron 2006, 52, 635. doi: 10.1016/j.neuron.2006.10.025

    12. [12]

      (12) Saltzman,W. M. Drug Delivery: Engineering Principles for Drug Therapy; Oxford University Press: New York, 2001; pp1-30.

    13. [13]

      (13) Zubarev, E. R.; Pralle, M. U.; Li, L.; Stupp, S. I. Science 1999,283, 523. doi: 10.1126/science.283.5401.523

    14. [14]

      (14) McNair, H. M.; Miller, J. M. Basic Gas Chromatography; JohnWiley & Sons: Hoboken, New Jersey, 2009; pp 1-267.

    15. [15]

      (15) Poole, C. F. The Essence of Chromatography; Elsevier ScienceB. V.: Amsterdam, the Netherlands, 2003; pp 80-86.

    16. [16]

      (16) Heftmann, E. Fundamentals and Applications of Chromatography and Related Differential Migration Methods ,in Chromatography; Elsevier Science B. V.: Amsterdam, theNetherlands, 2004; pp 319-364.

    17. [17]

      (17) Wick, C. D.; Siepmann, J. I.; Schure, M. R. Anal. Chem. 2002,74, 3518. doi: 10.1021/ac0200116

    18. [18]

      (18) Makrodimitris, K.; Fernandez, E. J.;Woolf, T. B.; O'Connell, J.P. Anal. Chem. 2005, 77, 1243. doi: 10.1021/ac048812r

    19. [19]

      (19) Turowski, M.; Yamakawa, N.; Meller, J.; Kimata, K.; Ikegami,T.; Hosoya, K.; Tanaka, N.; Thornton, E. R. J. Am. Chem. Soc2003, 125, 13836. doi: 10.1021/ja036006g

    20. [20]

      (20) Zhang, L.; Zhao, G.; Sun, Y. J. Phys. Chem. B 2010, 114, 2203.doi: 10.1021/jp903852c

    21. [21]

      (21) Dimartino, S.; Boi, C.; Sarti, G. C. J. Chromatogr. A 2011, 1218,1677. doi: 10.1016/j.chroma.2010.11.056

    22. [22]

      (22) Fu, Y.; Chen, L.; Ke, J.; Gao, Y.; Zhang, S.; Li, S.; Chen, T.;Zhao, J. Mol. Simul. 2012, 38 (6), 491. doi: 10.1080/08927022.2011.649427

    23. [23]

      (23) Ke, J. Y.; Fu, Y. Q.; Chen, L. L.; Chen, T. N.; Zhang, S. J.;Wang, H. B.; Zhao, J.W. J. Fudan Univ. 2012, 51 (2), 251.[柯佳颖, 傅应强, 陈莉莉, 陈天南, 张世界, 王洪波, 赵健伟.复旦大学学报, 2012, 51 (2), 251.]

    24. [24]

      (24) van Deemter, J. J.; Zuiderweg, F. J.; Klinkenberg, A. Chem. Eng. Sci. 1956, 5, 271. doi: 10.1016/0009-2509(56)80003-1

    25. [25]

      (25) Schwander, J.; Stauffer, B.; Sigg, A. Ann. Glac. 1988, 10, 141.

    26. [26]

      (26) McAfee, M.; Lindström, J.; Johansson,W. J. Soil. Sci. 1989, 40 (4), 707. doi: 10.1111/ejs.1989.40.issue-4

    27. [27]

      (27) Saxton, M. J.; Jacobson, K. Annu. Rev. Biophys. Biomol. Struct.1997, 26, 373. doi: 10.1146/annurev.biophys.26.1.373

    28. [28]

      (28) Sander, L. C.;Wise, S. A. Anal. Chem. 1995, 67 (18), 3284. doi: 10.1021/ac00114a027

    29. [29]

      (29) Welsch, T.; Michalke, D. J. Chromatogr. A 2003, 1000, 935. doi: 10.1016/S0021-9673(03)00503-X

    30. [30]

      (30) Keulemans, A. L. M.; Kwantes, A. Vapour Phase Chromatography; Academic Press: New York, 1957; p 15.


  • 加载中
    1. [1]

      Fan Wu Wenchang Tian Jin Liu Qiuting Zhang YanHui Zhong Zian Lin . Core-Shell Structured Covalent Organic Framework-Coated Silica Microspheres as Mixed-Mode Stationary Phase for High Performance Liquid Chromatography. University Chemistry, doi: 10.12461/PKU.DXHX202403031

    2. [2]

      Pingping Zhu Yongjun Xie Yuanping Yi Yu Huang Qiang Zhou Shiyan Xiao Haiyang Yang Pingsheng He . Excavation and Extraction of Ideological and Political Elements for the Virtual Simulation Experiments at Molecular Level: Taking the Project “the Simulation and Computation of Conformation, Morphology and Dimensions of Polymer Chains” as an Example. University Chemistry, doi: 10.3866/PKU.DXHX202309063

    3. [3]

      Xiaochen Zhang Fei Yu Jie Ma . 多角度数理模拟在电容去离子中的前沿应用. Acta Physico-Chimica Sinica, doi: 10.3866/PKU.WHXB202311026

    4. [4]

      Congying Lu Fei Zhong Zhenyu Yuan Shuaibing Li Jiayao Li Jiewen Liu Xianyang Hu Liqun Sun Rui Li Meijuan Hu . Experimental Improvement of Surfactant Interface Chemistry: An Integrated Design for the Fusion of Experiment and Simulation. University Chemistry, doi: 10.3866/PKU.DXHX202308097

    5. [5]

      Jingming Li Bowen Ding Nan Li Nurgul . Application of Comparative Teaching Method in Experimental Project Design of Instrumental Analysis Course: A Case Study in Chromatography Experiment Teaching. University Chemistry, doi: 10.3866/PKU.DXHX202312078

    6. [6]

      Donghui PANYuping XUXinyu WANGLizhen WANGJunjie YANDongjian SHIMin YANGMingqing CHEN . Preparation and in vivo tracing of 68Ga-labeled PM2.5 mimetic particles for positron emission tomography imaging. Chinese Journal of Inorganic Chemistry, doi: 10.11862/CJIC.20230468

    7. [7]

      Zunxiang Zeng Yuling Hu Yufei Hu Hua Xiao . Analysis of Plant Essential Oils by Supercritical CO2Extraction with Gas Chromatography-Mass Spectrometry: An Instrumental Analysis Comprehensive Experiment Teaching Reform. University Chemistry, doi: 10.3866/PKU.DXHX202309069

    8. [8]

      Yanhui Zhong Ran Wang Zian Lin . Analysis of Halogenated Quinone Compounds in Environmental Water by Dispersive Solid-Phase Extraction with Liquid Chromatography-Triple Quadrupole Mass Spectrometry. University Chemistry, doi: 10.12461/PKU.DXHX202402017

    9. [9]

      Ruoxi Sun Yiqian Xu Shaoru Rong Chunmiao Han Hui Xu . The Enchanting Collision of Light and Time Magic: Exploring the Footprints of Long Afterglow Lifetime. University Chemistry, doi: 10.3866/PKU.DXHX202310001

    10. [10]

      Jin Tong Shuyan Yu . Crystal Engineering for Supramolecular Chirality. University Chemistry, doi: 10.3866/PKU.DXHX202308113

    11. [11]

      Yong Shu Xing Chen Sai Duan Rongzhen Liao . How to Determine the Equilibrium Bond Distance of Homonuclear Diatomic Molecules: A Case Study of H2. University Chemistry, doi: 10.3866/PKU.DXHX202310102

    12. [12]

      Laiying Zhang Yinghuan Wu Yazi Yu Yecheng Xu Haojie Zhang Weitai Wu . Innovation and Practice of Polymer Chemistry Experiment Teaching for Non-Polymer Major Students of Chemistry: Taking the Synthesis, Solution Property, Optical Performance and Application of Thermo-Sensitive Polymers as an Example. University Chemistry, doi: 10.3866/PKU.DXHX202310126

    13. [13]

      Yang YANGPengcheng LIZhan SHUNengrong TUZonghua WANG . Plasmon-enhanced upconversion luminescence and application of molecular detection. Chinese Journal of Inorganic Chemistry, doi: 10.11862/CJIC.20230440

    14. [14]

      Yuhao SUNQingzhe DONGLei ZHAOXiaodan JIANGHailing GUOXianglong MENGYongmei GUO . Synthesis and antibacterial properties of silver-loaded sod-based zeolite. Chinese Journal of Inorganic Chemistry, doi: 10.11862/CJIC.20230169

    15. [15]

      Wenyan Dan Weijie Li Xiaogang Wang . The Technical Analysis of Visual Software ShelXle for Refinement of Small Molecular Crystal Structure. University Chemistry, doi: 10.3866/PKU.DXHX202302060

    16. [16]

      Shule Liu . Application of SPC/E Water Model in Molecular Dynamics Teaching Experiments. University Chemistry, doi: 10.3866/PKU.DXHX202310029

    17. [17]

      Rui Gao Ying Zhou Yifan Hu Siyuan Chen Shouhong Xu Qianfu Luo Wenqing Zhang . Design, Synthesis and Performance Experiment of Novel Photoswitchable Hybrid Tetraarylethenes. University Chemistry, doi: 10.3866/PKU.DXHX202310050

    18. [18]

      Wenbing Hu Jin Zhu . Flipped Classroom Approach in Teaching Professional English Reading and Writing to Polymer Graduates. University Chemistry, doi: 10.3866/PKU.DXHX202310015

    19. [19]

      Shicheng Yan . Experimental Teaching Design for the Integration of Scientific Research and Teaching: A Case Study on Organic Electrooxidation. University Chemistry, doi: 10.12461/PKU.DXHX202408036

    20. [20]

      Kai Yang Gehua Bi Yong Zhang Delin Jin Ziwei Xu Qian Wang Lingbao Xing . Comprehensive Polymer Chemistry Experiment Design: Preparation and Characterization of Rigid Polyurethane Foam Materials. University Chemistry, doi: 10.3866/PKU.DXHX202308045

Metrics
  • PDF Downloads(657)
  • Abstract views(1556)
  • HTML views(1)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return